精英家教网 > 高中数学 > 题目详情
19.观察下列各等式:
1+1=$\frac{1}{2}$×4
(2+1)+(2+2)=1×7
(3+1)+(3+2)+(3+3)=$\frac{3}{2}$×10
(4+1)+(4+2)+(4+3)+(4+4)=2×13

按照此规律,则(n+1)+(n+2)+(n+3)+…+(n+n)=$\frac{n}{2}×(3n+1)$.

分析 根据题意,左边是n个数和的形式,右边是积的形式,一项为$\frac{n}{2}$,另一项成等差数列,规律为3n+1,即可得出结论.

解答 解:由题意,1+1=$\frac{1}{2}$×4
(2+1)+(2+2)=1×7
(3+1)+(3+2)+(3+3)=$\frac{3}{2}$×10
(4+1)+(4+2)+(4+3)+(4+4)=2×13

按照此规律,则(n+1)+(n+2)+(n+3)+…+(n+n)=$\frac{n}{2}×(3n+1)$,
故答案为$\frac{n}{2}×(3n+1)$.

点评 通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是得出左边是n个数和的形式,右边是积的形式,一项为$\frac{n}{2}$,另一项成等差数列,规律为3n+1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.(x-2)3(x+1)4的展开式中x2的系数为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数据x,y的取值如表:
x12345
y13.2m14.215.416.4
从散点图可知,y与x呈线性相关关系,已知第四组数据在回归直线$\hat y=0.8x+\hat a$上,则m的取值为13.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知z=x2+y2,其中实数x,y满足$\left\{\begin{array}{l}-x+y≤1\\ x+2y≥2\\ x-2≤0\end{array}\right.$,则z的最小值是(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{7}{9}$C.$\frac{4}{5}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD为梯形,AB∥CD,AB=2DC=2$\sqrt{3}$,且△PAD与△ABD均为正三角形,E为AD的中点,G为△PAD的重心,AC∩BD=F
(1)求证:GF∥平面PCD;
(2)求三棱锥G-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{{\sqrt{3}c-a}}{b}=\frac{cosA}{cosB}$.
(Ⅰ)求sinB的值;
(Ⅱ)若a=2$\sqrt{3}$,b=2$\sqrt{6}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若将函数f(x)=$\left\{\begin{array}{l}{2|x|-2,x∈[-1,1]}\\{f(x-2),x∈(1,+∞)}\end{array}\right.$的正零点从小到大依次排成一列,得到数列{an},n∈N*,则数列{(-1)n+1an}的前2017项和为(  )
A.4032B.2016C.4034D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$n=3\int_{-\frac{π}{2}}^{\frac{π}{2}}{(sinx+cosx)dx}$,则${(y+\frac{2}{y})^n}$的展开式中的常数项为160.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在区间[-1,2]内随机取一个实数a,则关于x的方程x2-4ax+5a2+a=0有解的概率是$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案