精英家教网 > 高中数学 > 题目详情
8.若数列{an}的前n项和为Sn,S2n-12+S2n2=4(a2n-2),则2a1+a100=(  )
A.-8B.-6C.0D.2

分析 将S2n=S2n-1+a2n代入条件式化简得出关于S2n-1的二次方程,根据判别式等于0得出a2n=0,再令n=1计算a1即可.

解答 解:∵S${\;}_{2n-1}^{2}$+S${\;}_{2n}^{2}$=4(a2n-2),
∴S${\;}_{2n-1}^{2}$+(S2n-1+a2n2=4a2n-8,
∴2S${\;}_{2n-1}^{2}$+2a2nS2n-1+a${\;}_{2n}^{2}$-4a2n+8=0,
∴△=4a2n2-8(a${\;}_{2n}^{2}$-4a2n+8)=-4a${\;}_{2n}^{2}$+32a2n-64=-4(a2n-4)2=0,
∴a2n=4,
∴a2=a100=4,
∵S${\;}_{2n-1}^{2}$+S${\;}_{2n}^{2}$=4(a2n-2),
∴当n=1时,a12+(a1+4)2=8,解得a1=-2.
∴2a1+a100=0.
故选:C.

点评 本题考查了数列的递推公式,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=sin2x+sin(\frac{π}{3}-2x)$.
(Ⅰ)求f(x)的最大值及相应的x值;
(Ⅱ)设函数$g(x)=f(\frac{π}{4}x)$,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数h(x)=(x-a)ex+a.
(1)若x∈[-1,1],求函数h(x)的最小值;
(2)当a=3时,若对?x1∈[-1,1],?x2∈[1,2],使得h(x1)≥x22-2bx2-ae+e+$\frac{15}{2}$成立,求b的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知F1,F2为椭圆C的两个焦点,P为C上一点,若△PF1F2的三边|PF1|,|F1F2|,|PF2|成等差数列,则C的离心率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从含有质地均匀且大小相同的2个红球、n个白球的口袋中随机取出一球,若取到红球的概率是$\frac{2}{5}$,则取得白球的概率等于(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.
(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);
(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价xi(单位:元/件,整数)和销量yi(单位:件)(i=1,2,…,8)如下表所示:
售价x3335373941434547
销量y840800740695640580525460
①请根据下列数据计算相应的相关指数R2,并根据计算结果,选择合适的回归模型进行拟合;
②根据所选回归模型,分析售价x定为多少时?利润z可以达到最大.
$\hat y=-1200lnx+5000$$\hat y=-27x+1700$$\hat y=-\frac{1}{3}{x^2}+1200$
${\sum_{i=1}^8{({{y_i}-{{\hat y}_i}})}^2}$49428.7411512.43175.26
${\sum_{i=1}^8{({{y_i}-\overline y})}^2}$124650
(附:相关指数${R^2}=1-\frac{{{{\sum_{i=1}^n{({{y_i}-{{\hat y}_i}})}}^2}}}{{{{\sum_{i=1}^n{({{y_i}-\overline y})}}^2}}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\sqrt{x-2}$+lg(5-x)的定义域是[2,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)=2g(x)+$\frac{x-4}{{x}^{2}+1}$,则下列结论中正确的序号是①④
①f($\frac{1}{x}$)=f(x);
②f(x)在($\frac{1}{2}$,+∞)上单调递减;
③g(x)在(0,+∞)上单调递增;
④若f($\frac{1}{{x}^{2}+1}$)+f(4x-4x2-2)≥0,则x∈(-∞,$\frac{1}{3}$]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数f(x)=cos2x的图象向右平移$\frac{π}{3}$个单位得到g(x)的图象,若g(x)在(-2m,-$\frac{π}{6}$)和(3m,$\frac{5π}{6}$)上都单调递减,则实数m的取值范围为(  )
A.[$\frac{π}{9}$,$\frac{5π}{18}$)B.[$\frac{π}{9}$,$\frac{π}{3}$)C.($\frac{π}{12}$,$\frac{5π}{18}$)D.[$\frac{π}{18}$,$\frac{5π}{12}$]

查看答案和解析>>

同步练习册答案