精英家教网 > 高中数学 > 题目详情
19.已知函数h(x)=(x-a)ex+a.
(1)若x∈[-1,1],求函数h(x)的最小值;
(2)当a=3时,若对?x1∈[-1,1],?x2∈[1,2],使得h(x1)≥x22-2bx2-ae+e+$\frac{15}{2}$成立,求b的范围.

分析 (1)求出极值点x=a-1.通过当a≤0时,当0<a<2时,当a≥2时,利用函数的单调性求解函数的最小值.
(2)令$f(x)={x^2}-2bx-ae+e+\frac{15}{2}$,“对?x1∈[-1,1],?x2∈[1,2],使得$h({x_1})≥{x_2}^2-2b{x_2}-ae+e+\frac{15}{2}$成立”等价于“f(x)在[1,2]上的最小值不大于h(x)在[-1,1]上的最小值”.推出h(x)min≥f(x)min.通过①当b≤1时,②当1<b<2时,③当b≥2时,分别利用极值与最值求解b的取值范围.

解答 解:(1)h'(x)=(x-a+1)ex,令h'(x)=0得x=a-1.
当a-1≤-1即a≤0时,在[-1,1]上h'(x)≥0,函数h(x)=(x-a)ex+a递增,h(x)的最小值为$h(-1)=a-\frac{1+a}{e}$.
当-1<a-1<1即0<a<2时,在x∈[-1,a-1]上h'(x)≤0,h(x)为减函数,在x∈[a-1,1]上h'(x)≥0,h(x)为增函数.∴h(x)的最小值为h(a-1)=-ea-1+a.
当a-1≥1即a≥2时,在[-1,1]上h'(x)≤0,h(x)递减,h(x)的最小值为h(1)=(1-a)e+a.
综上所述,当a≤0时h(x)的最小值为$a-\frac{1+a}{e}$,当a≥2时h(x)的最小值为(1-a)e+a,当0<a<2时,h(x)最小值为-ea-1+a.
(2)令$f(x)={x^2}-2bx-ae+e+\frac{15}{2}$,
由题可知“对?x1∈[-1,1],?x2∈[1,2],使得$h({x_1})≥{x_2}^2-2b{x_2}-ae+e+\frac{15}{2}$成立”
等价于“f(x)在[1,2]上的最小值不大于h(x)在[-1,1]上的最小值”.
即h(x)min≥f(x)min
由(1)可知,当a=3时,h(x)min=h(1)=(1-a)e+a=-2e+3.
当a=3时,$f(x)={x^2}-2bx-2e+\frac{15}{2}={(x-b)^2}-{b^2}-2e+\frac{15}{2}$,x∈[1,2],
①当b≤1时,$f{(x)_{min}}=f(1)=-2b-2e+\frac{17}{2}$,
由$-2e+3≥-2b-2e+\frac{17}{2}$得$b≥\frac{11}{4}$,与b≤1矛盾,舍去.
②当1<b<2时,$f{(x)_{min}}=f(b)=-{b^2}-2e+\frac{15}{2}$,
由$-2e+3≥-{b^2}-2e+\frac{15}{2}$得${b^2}≥\frac{9}{2}$,与1<b<2矛盾,舍去.
③当b≥2时,$f{(x)_{min}}=f(2)=-4b-2e+\frac{23}{2}$,
由$-2e+3≥-4b-2e+\frac{23}{2}$得$b≥\frac{17}{8}$.
综上,b的取值范围是$[{\frac{17}{8},+∞})$.

点评 本题考查函数的导数的综合应用,函数的极值以及函数的单调性与函数的最值的关系,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设i是虚数单位,$\overline z$是复数z的共轭复数,若$z=\frac{2}{-1+i}$,则$\overline z$=(  )
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在空间直角坐标系O-xyz中,一个四面体的四个顶点坐标分别是(0,0,0),(0,3,1),(2,3,0),(2,0,1),则它的外接球的表面积为14π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.《周髀算经》中给出了弦图,所谓弦图是由四个全等的直角三角形和中间一个小正方形拼成一个大的正方形,若图中直角三角形两锐角分别为α、β,且小正方形与大正方形面积之比为4:9,则cos(α-β)的值为(  )
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{2}{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=1+4cosθ}\\{y=-1+4sinθ}\end{array}\right.$(θ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,直线l:$ρ=\frac{2\sqrt{2}m}{sin(θ+\frac{π}{4})}$(m为常数).
(1)求曲线C的普通方程与直线l的直角坐标方程;
(2)若直线l与曲线C相交于A、B两点,当|AB|=4时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将一根长为10米的木棒截成三段,则每段木棒长不低于1米的概率为(  )
A.$\frac{8}{25}$B.$\frac{16}{25}$C.$\frac{49}{100}$D.$\frac{49}{200}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,∠ABC=90°,BC=6,点P在BC上,则$\overrightarrow{PC}$•$\overrightarrow{PA}$的最小值是(  )
A.-36B.-9C.9D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若数列{an}的前n项和为Sn,S2n-12+S2n2=4(a2n-2),则2a1+a100=(  )
A.-8B.-6C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.过椭圆C:$\frac{{x}^{2}}{2}$+y2=1的右焦点F的直线l交椭圆于A,B两点,M是AB的中点.
(1)求动点M的轨迹方程;
(2)过点M且与直线l垂直的直线和坐标轴分别交于D,E两点,记△MDF的面积为S1,△ODE的面积为S2,试问:是否存在直线l,使得S1=S2?请说明理由.

查看答案和解析>>

同步练习册答案