精英家教网 > 高中数学 > 题目详情
3.从含有质地均匀且大小相同的2个红球、n个白球的口袋中随机取出一球,若取到红球的概率是$\frac{2}{5}$,则取得白球的概率等于(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 利用取到红球的概率是$\frac{2}{5}$,求出n,即可求出取得白球的概率.

解答 解:由题意,$\frac{2}{n+2}$=$\frac{2}{5}$,∴n=3,
∴取得白球的概率等于$\frac{3}{5}$,
故选C.

点评 本题考查概率的计算,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设$a={log_2}\frac{1}{5}$,$b={log_3}\frac{1}{5}$,c=2-0.1,则a,b,c间的大小关系是(  )
A.c>b>aB.c>a>bC.b>a>cD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=1+4cosθ}\\{y=-1+4sinθ}\end{array}\right.$(θ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,直线l:$ρ=\frac{2\sqrt{2}m}{sin(θ+\frac{π}{4})}$(m为常数).
(1)求曲线C的普通方程与直线l的直角坐标方程;
(2)若直线l与曲线C相交于A、B两点,当|AB|=4时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,∠ABC=90°,BC=6,点P在BC上,则$\overrightarrow{PC}$•$\overrightarrow{PA}$的最小值是(  )
A.-36B.-9C.9D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.据统计,某物流公司每天的业务中,从甲地到乙地的可配送的货物量X(40≤X<200,单位:件)的频率分布直方图,如图所示,将频率视为概率,回答以下问题.
(1)求该物流公司每天从甲地到乙地平均可配送的货物量;
(2)该物流公司拟购置货车专门运营从甲地到乙地的货物,一辆货车每天只能运营一趟,每辆车每
趟最多只能装载40 件货物,满载发车,否则不发车.若发车,则每辆车每趟可获利1000 元;若未发车,
则每辆车每天平均亏损200 元.为使该物流公司此项业务的营业利润最大,该物流公司应该购置几辆货
车?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若数列{an}的前n项和为Sn,S2n-12+S2n2=4(a2n-2),则2a1+a100=(  )
A.-8B.-6C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{x^2}{2}+b{e^x}$有两个极值点x1,x2,其中b为常数,e为自然对数的底数.
(1)求实数b的取值范围;
(2)证明:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某校开设A类选修课4门,B类选修课2门,每位同学需从两类选修课中共选4门,若要求至少选一门B类课程,则不同的选法共有14种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱锥ABC-A1B1C1中,侧面ACC1A1⊥底面ABC,△A1AC为等边三角形,AC⊥A1B.
(1)求证:AB=BC;
(2)若∠ABC=90°,求A1B与平面BCC1B1所成角的正弦值.

查看答案和解析>>

同步练习册答案