精英家教网 > 高中数学 > 题目详情
13.设$a={log_2}\frac{1}{5}$,$b={log_3}\frac{1}{5}$,c=2-0.1,则a,b,c间的大小关系是(  )
A.c>b>aB.c>a>bC.b>a>cD.a>b>c

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵$a={log_2}\frac{1}{5}$<$b={log_3}\frac{1}{5}$<0,c=2-0.1>0,
∴c>b>a.
故选:A.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若圆C:x2+y2+2x+2y-7=0关于直线ax+by+4=0对称,由点P(a,b)向圆C作切线,切点为A,则线段PA的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)为定义在$(0,\frac{π}{2})$上的函数,f'(x)是它的导函数,且$\frac{f'(x)}{tanx}<f(x)$恒成立,则(  )
A.$f(\frac{π}{3})<\sqrt{3}f(\frac{π}{6})$B.$f(\frac{π}{6})<\sqrt{2}f(\frac{π}{4})$C.$f(\frac{π}{3})<f(\frac{π}{4})$D.$f(\frac{π}{4})<\sqrt{3}f(\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象与坐标轴的三个交点分别为P(-1,0),Q、R,且线段RQ的中点M的坐标为($\frac{3}{2}$,-$\frac{1}{2}$),则f(-2)等于(  )
A.1B.-1C.$\frac{\sqrt{6}}{2}$D.-$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等差数列{an}中,a7=4,a8=1,则a10=(  )
A.-5B.-2C.7D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=sin2x+sin(\frac{π}{3}-2x)$.
(Ⅰ)求f(x)的最大值及相应的x值;
(Ⅱ)设函数$g(x)=f(\frac{π}{4}x)$,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若对于任意实数m∈[0,1],总存在唯一实数x∈[-1,1],使得m+x2ex-a=0成立,则实数a的取值范围是(  )
A.[1,e]B.$({1+\frac{1}{e},e}]$C.(0,e]D.$[{1+\frac{1}{e},e}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某班开展一次智力竞赛活动,共a,b,c三个问题,其中题a满分是20分,题b,c满分都是25分.每道题或者得满分,或者得0分.活动结果显示,全班同学每人至少答对一道题,有1名同学答对全部三道题,有15名同学答对其中两道题.答对题a与题b的人数之和为29,答对题a与题c的人数之和为25,答对题b与题c的人数之和为20.则该班同学中只答对一道题的人数是4;该班的平均成绩是42.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从含有质地均匀且大小相同的2个红球、n个白球的口袋中随机取出一球,若取到红球的概率是$\frac{2}{5}$,则取得白球的概率等于(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案