精英家教网 > 高中数学 > 题目详情
4.已知f(x)为定义在$(0,\frac{π}{2})$上的函数,f'(x)是它的导函数,且$\frac{f'(x)}{tanx}<f(x)$恒成立,则(  )
A.$f(\frac{π}{3})<\sqrt{3}f(\frac{π}{6})$B.$f(\frac{π}{6})<\sqrt{2}f(\frac{π}{4})$C.$f(\frac{π}{3})<f(\frac{π}{4})$D.$f(\frac{π}{4})<\sqrt{3}f(\frac{π}{3})$

分析 把给出的等式变形得到f′(x)sinx-f(x)cosx>0,由此联想构造辅助函数g(x)=$\frac{f(x)}{sinx}$,由其导函数的符号得到其在(0,$\frac{π}{2}$)上为增函数,则g($\frac{π}{6}$)<g($\frac{π}{4}$)<g(1)<g( $\frac{π}{3}$),整理后即可得到答案.

解答 解:因为x∈(0,$\frac{π}{2}$),所以sinx>0,cosx>0,
由f(x)<f′(x)tanx,得f(x)cosx<f′(x)sinx,
即f′(x)sinx-f(x)cosx>0.
令g(x)=$\frac{f(x)}{sinx}$,x∈(0,$\frac{π}{2}$),则g′(x)=$\frac{f′(x)sinx-f(x)cosx}{{sin}^{2}x}$>0,
所以函数g(x)在x∈(0,$\frac{π}{2}$)上为增函数,
则g($\frac{π}{6}$)<g($\frac{π}{4}$)<g(1)<g($\frac{π}{3}$),
对照选项,变形得A正确;
故选:A.

点评 本题考查了导数的运算法则,考查了利用函数导函数的符号判断函数的单调性,考查了函数构造法,属中档题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在区间[-1,1]上任取一个数a,则曲线y=x2+x在点x=a处的切线的倾斜角为锐角的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某公司有A、B、C、D四辆汽车,其中A车的车牌尾号为8,B、C两辆车的车牌尾号为2,D车的车牌尾号为3,已知在非限行日,每辆车都有可能出车或不出车.已知A、D两辆汽车每天出车的概率为$\frac{2}{3}$,B、C两辆汽车每天出车的概率为$\frac{1}{2}$,且四辆汽车是否出车是相互独立的.
该公司所在地区汽车限行规定如下:
车牌尾号0和51和62和73和84和9
限行日星期一星期二星期三星期四星期五
(I)求该公司在星期二至少有2辆汽车出车的概率;
(Ⅱ)设ξ表示该公司在星期三和星期四两天出车的车辆数之和,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设非零向量$\overrightarrow a$与$\overrightarrow b$夹角是$\frac{2π}{3}$,且$|\overrightarrow a|=|\overrightarrow a+\overrightarrow b|$,则$\frac{|2\overrightarrow a+t\overrightarrow b|}{|\overrightarrow b|}$的最小值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆F1:(x+1)2+y2=9,圆F2:(x-1)2+y2=1,动圆P与圆F1内切,与圆F2外.O为坐标原点.
(Ⅰ)求圆心P的轨迹C的方程.
(Ⅱ)直线l:y=kx-2与曲线C交于A,B两点,求△OAB面积的最大值,以及取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设i是虚数单位,$\overline z$是复数z的共轭复数,若$z=\frac{2}{-1+i}$,则$\overline z$=(  )
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.利用如图算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=25内的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设$a={log_2}\frac{1}{5}$,$b={log_3}\frac{1}{5}$,c=2-0.1,则a,b,c间的大小关系是(  )
A.c>b>aB.c>a>bC.b>a>cD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=1+4cosθ}\\{y=-1+4sinθ}\end{array}\right.$(θ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,直线l:$ρ=\frac{2\sqrt{2}m}{sin(θ+\frac{π}{4})}$(m为常数).
(1)求曲线C的普通方程与直线l的直角坐标方程;
(2)若直线l与曲线C相交于A、B两点,当|AB|=4时,求实数m的值.

查看答案和解析>>

同步练习册答案