15£®Ä³¹«Ë¾ÓÐA¡¢B¡¢C¡¢DËÄÁ¾Æû³µ£¬ÆäÖÐA³µµÄ³µÅÆÎ²ºÅΪ8£¬B¡¢CÁ½Á¾³µµÄ³µÅÆÎ²ºÅΪ2£¬D³µµÄ³µÅÆÎ²ºÅΪ3£¬ÒÑÖªÔÚ·ÇÏÞÐÐÈÕ£¬Ã¿Á¾³µ¶¼ÓпÉÄܳö³µ»ò²»³ö³µ£®ÒÑÖªA¡¢DÁ½Á¾Æû³µÃ¿Ìì³ö³µµÄ¸ÅÂÊΪ$\frac{2}{3}$£¬B¡¢CÁ½Á¾Æû³µÃ¿Ìì³ö³µµÄ¸ÅÂÊΪ$\frac{1}{2}$£¬ÇÒËÄÁ¾Æû³µÊÇ·ñ³ö³µÊÇÏ໥¶ÀÁ¢µÄ£®
¸Ã¹«Ë¾ËùÔÚµØÇøÆû³µÏÞÐй涨ÈçÏ£º
³µÅÆÎ²ºÅ0ºÍ51ºÍ62ºÍ73ºÍ84ºÍ9
ÏÞÐÐÈÕÐÇÆÚÒ»ÐÇÆÚ¶þÐÇÆÚÈýÐÇÆÚËÄÐÇÆÚÎå
£¨I£©Çó¸Ã¹«Ë¾ÔÚÐÇÆÚ¶þÖÁÉÙÓÐ2Á¾Æû³µ³ö³µµÄ¸ÅÂÊ£»
£¨¢ò£©Éè¦Î±íʾ¸Ã¹«Ë¾ÔÚÐÇÆÚÈýºÍÐÇÆÚËÄÁ½Ìì³ö³µµÄ³µÁ¾ÊýÖ®ºÍ£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

·ÖÎö £¨I£©ÉèʼþM±íʾ¡°ÐÇÆÚ¶þÖ»ÓÐÒ»Á¾Æû³µ³ö³µ¡±£¬Ê¼þN±íʾ¡°ÐÇÆÚ¶þûÓÐÆû³µ³ö³µ¡±£®¿ÉµÃ£ºP£¨M£©=${∁}_{2}^{1}¡Á£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$+${∁}_{2}^{1}¡Á\frac{2}{3}¡Á\frac{1}{3}¡Á£¨\frac{1}{2}£©^{2}$=$\frac{6}{36}$£¬P£¨N£©=$£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$=$\frac{1}{36}$£®¿ÉµÃ¸Ã¹«Ë¾ÔÚÐÇÆÚ¶þÖÁÉÙÓÐ2Á¾Æû³µ³ö³µµÄ¸ÅÂÊP=1-P£¨M£©-P£¨N£©£®
£¨II£©¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£®ÀûÓÃÏ໥¶ÀÁ¢Ê¼þ¡¢»¥³âʼþ¡¢¹Åµä¸ÅÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÉèʼþM±íʾ¡°ÐÇÆÚ¶þÖ»ÓÐÒ»Á¾Æû³µ³ö³µ¡±£¬Ê¼þN±íʾ¡°ÐÇÆÚ¶þûÓÐÆû³µ³ö³µ¡±£®
¡àP£¨M£©=${∁}_{2}^{1}¡Á£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$+${∁}_{2}^{1}¡Á\frac{2}{3}¡Á\frac{1}{3}¡Á£¨\frac{1}{2}£©^{2}$=$\frac{6}{36}$£¬P£¨N£©=$£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$=$\frac{1}{36}$£®
¡à¸Ã¹«Ë¾ÔÚÐÇÆÚ¶þÖÁÉÙÓÐ2Á¾Æû³µ³ö³µµÄ¸ÅÂÊP=1-P£¨M£©-P£¨N£©=$\frac{29}{36}$£®
£¨II£©¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£®
¡àP£¨¦Î=0£©=$£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$=$\frac{1}{36}$£®
P£¨¦Î=1£©=${∁}_{2}^{1}¡Á£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$+${∁}_{2}^{1}¡Á\frac{2}{3}¡Á\frac{1}{3}¡Á£¨\frac{1}{2}£©^{2}$=$\frac{6}{36}$£¬
P£¨¦Î=2£©=$£¨\frac{2}{3}£©^{2}¡Á£¨\frac{1}{2}£©^{2}$+${∁}_{2}^{1}¡Á\frac{2}{3}¡Á\frac{1}{3}¡Á{∁}_{2}^{1}$¡Á$£¨\frac{1}{2}£©^{2}$+$£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$=$\frac{13}{36}$£®
P£¨¦Î=3£©=$£¨\frac{2}{3}£©^{2}¡Á{∁}_{2}^{1}¡Á£¨\frac{1}{2}£©^{2}$+${∁}_{2}^{1}¡Á\frac{2}{3}¡Á\frac{1}{3}¡Á£¨\frac{1}{2}£©^{2}$=$\frac{12}{36}$£®
P£¨¦Î=4£©=$£¨\frac{2}{3}£©^{2}¡Á£¨\frac{1}{2}£©^{2}$=$\frac{4}{36}$£®¦ÎµÄ·Ö²¼ÁУº
²¼ÁÐΪ

¦Î01234
p$\frac{1}{36}$$\frac{6}{36}$$\frac{13}{36}$$\frac{12}{36}$$\frac{4}{36}$
¡àE¦Î=0+$1¡Á\frac{6}{36}$+2¡Á$\frac{13}{36}$+3¡Á$\frac{12}{36}$+4¡Á$\frac{4}{36}$=$\frac{7}{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÏ໥¶ÔÁ¢Óë¶ÀÁ¢Ê¼þ¡¢»¥³âʼþ¡¢¹Åµä¸ÅÂʼÆË㹫ʽ¡¢Ëæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=2$\sqrt{3}sin£¨wx+\frac{¦Ð}{6}£©coswx$£¨0£¼w£¼2£©£¬ÇÒf£¨x£©µÄͼÏó¹ýµã$£¨\frac{5¦Ð}{12}£¬\frac{{\sqrt{3}}}{2}£©$£®
£¨1£©ÇówµÄÖµ¼°º¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©½«y=f£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬µÃµ½º¯Êýy=g£¨x£©µÄͼÏó£¬ÒÑÖª$g£¨\frac{¦Á}{2}£©=\frac{{5\sqrt{3}}}{6}$£¬Çó$cos£¨2¦Á-\frac{¦Ð}{3}£©$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Ö±ÏßlÓ뺯Êýy=cosx£¨x¡Ê[-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$]£©Í¼ÏóÏàÇÐÓÚµãA£¬ÇÒl¡ÎCP£¬C£¨-$\frac{¦Ð}{2}$£¬0£©£¬PΪͼÏóµÄ¼«Öµµã£¬lÓëxÖá½»µãΪB£¬¹ýÇеãA×÷AD¡ÍxÖᣬ´¹×ãΪD£¬Ôò$\overrightarrow{BA}•\overrightarrow{BD}$=$\frac{{¦Ð}^{2}-4}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÈôÔ²C£ºx2+y2+2x+2y-7=0¹ØÓÚÖ±Ïßax+by+4=0¶Ô³Æ£¬ÓɵãP£¨a£¬b£©ÏòÔ²C×÷ÇÐÏߣ¬ÇеãΪA£¬ÔòÏß¶ÎPAµÄ×îСֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=$\frac{{{n^2}+3n}}{2}$£¬ÕýÏîµÈ±ÈÊýÁÐ{bn}ÖУ¬b1+b3=$\frac{20}{3}$£¬b2+b4=$\frac{20}{9}$£®
£¨¢ñ£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨¢ò£©ÈôcnÊÇanÓëbn+1µÄµÈ±ÈÖÐÏÇóÊýÁÐ{cn2}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÈçͼËùʾ£¬ÌÝÐÎABCDÁ½Ìõ¶Ô½ÇÏßAC£¬BDµÄ½»µãΪO£¬AB=2CD£¬ËıßÐÎOBEFΪ¾ØÐΣ¬MΪÏß¶ÎABÉÏÒ»µã£¬AM=2MB£®
£¨¢ñ£©ÇóÖ¤£ºEM¡ÎÆ½ÃæADF£»
£¨¢ò£©ÈôEF¡ÍCF£¬ÇóÖ¤AC¡ÍBD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®¹ýµã£¨1£¬1£©µÄÖ±ÏßlÓëÔ²£¨x-2£©2+£¨y-3£©2=9ÏཻÓÚA£¬BÁ½µã£¬µ±|AB|=4ʱ£¬Ö±ÏßlµÄ·½³ÌΪx+2y-3=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªf£¨x£©Îª¶¨ÒåÔÚ$£¨0£¬\frac{¦Ð}{2}£©$Éϵĺ¯Êý£¬f'£¨x£©ÊÇËüµÄµ¼º¯Êý£¬ÇÒ$\frac{f'£¨x£©}{tanx}£¼f£¨x£©$ºã³ÉÁ¢£¬Ôò£¨¡¡¡¡£©
A£®$f£¨\frac{¦Ð}{3}£©£¼\sqrt{3}f£¨\frac{¦Ð}{6}£©$B£®$f£¨\frac{¦Ð}{6}£©£¼\sqrt{2}f£¨\frac{¦Ð}{4}£©$C£®$f£¨\frac{¦Ð}{3}£©£¼f£¨\frac{¦Ð}{4}£©$D£®$f£¨\frac{¦Ð}{4}£©£¼\sqrt{3}f£¨\frac{¦Ð}{3}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èô¶ÔÓÚÈÎÒâʵÊým¡Ê[0£¬1]£¬×Ü´æÔÚΨһʵÊýx¡Ê[-1£¬1]£¬Ê¹µÃm+x2ex-a=0³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[1£¬e]B£®$£¨{1+\frac{1}{e}£¬e}]$C£®£¨0£¬e]D£®$[{1+\frac{1}{e}£¬e}]$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸