| ³µÅÆÎ²ºÅ | 0ºÍ5 | 1ºÍ6 | 2ºÍ7 | 3ºÍ8 | 4ºÍ9 |
| ÏÞÐÐÈÕ | ÐÇÆÚÒ» | ÐÇÆÚ¶þ | ÐÇÆÚÈý | ÐÇÆÚËÄ | ÐÇÆÚÎå |
·ÖÎö £¨I£©ÉèʼþM±íʾ¡°ÐÇÆÚ¶þÖ»ÓÐÒ»Á¾Æû³µ³ö³µ¡±£¬Ê¼þN±íʾ¡°ÐÇÆÚ¶þûÓÐÆû³µ³ö³µ¡±£®¿ÉµÃ£ºP£¨M£©=${∁}_{2}^{1}¡Á£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$+${∁}_{2}^{1}¡Á\frac{2}{3}¡Á\frac{1}{3}¡Á£¨\frac{1}{2}£©^{2}$=$\frac{6}{36}$£¬P£¨N£©=$£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$=$\frac{1}{36}$£®¿ÉµÃ¸Ã¹«Ë¾ÔÚÐÇÆÚ¶þÖÁÉÙÓÐ2Á¾Æû³µ³ö³µµÄ¸ÅÂÊP=1-P£¨M£©-P£¨N£©£®
£¨II£©¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£®ÀûÓÃÏ໥¶ÀÁ¢Ê¼þ¡¢»¥³âʼþ¡¢¹Åµä¸ÅÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨I£©ÉèʼþM±íʾ¡°ÐÇÆÚ¶þÖ»ÓÐÒ»Á¾Æû³µ³ö³µ¡±£¬Ê¼þN±íʾ¡°ÐÇÆÚ¶þûÓÐÆû³µ³ö³µ¡±£®
¡àP£¨M£©=${∁}_{2}^{1}¡Á£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$+${∁}_{2}^{1}¡Á\frac{2}{3}¡Á\frac{1}{3}¡Á£¨\frac{1}{2}£©^{2}$=$\frac{6}{36}$£¬P£¨N£©=$£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$=$\frac{1}{36}$£®
¡à¸Ã¹«Ë¾ÔÚÐÇÆÚ¶þÖÁÉÙÓÐ2Á¾Æû³µ³ö³µµÄ¸ÅÂÊP=1-P£¨M£©-P£¨N£©=$\frac{29}{36}$£®
£¨II£©¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£®
¡àP£¨¦Î=0£©=$£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$=$\frac{1}{36}$£®
P£¨¦Î=1£©=${∁}_{2}^{1}¡Á£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$+${∁}_{2}^{1}¡Á\frac{2}{3}¡Á\frac{1}{3}¡Á£¨\frac{1}{2}£©^{2}$=$\frac{6}{36}$£¬
P£¨¦Î=2£©=$£¨\frac{2}{3}£©^{2}¡Á£¨\frac{1}{2}£©^{2}$+${∁}_{2}^{1}¡Á\frac{2}{3}¡Á\frac{1}{3}¡Á{∁}_{2}^{1}$¡Á$£¨\frac{1}{2}£©^{2}$+$£¨\frac{1}{2}£©^{2}¡Á£¨\frac{1}{3}£©^{2}$=$\frac{13}{36}$£®
P£¨¦Î=3£©=$£¨\frac{2}{3}£©^{2}¡Á{∁}_{2}^{1}¡Á£¨\frac{1}{2}£©^{2}$+${∁}_{2}^{1}¡Á\frac{2}{3}¡Á\frac{1}{3}¡Á£¨\frac{1}{2}£©^{2}$=$\frac{12}{36}$£®
P£¨¦Î=4£©=$£¨\frac{2}{3}£©^{2}¡Á£¨\frac{1}{2}£©^{2}$=$\frac{4}{36}$£®¦ÎµÄ·Ö²¼ÁУº
²¼ÁÐΪ
| ¦Î | 0 | 1 | 2 | 3 | 4 |
| p | $\frac{1}{36}$ | $\frac{6}{36}$ | $\frac{13}{36}$ | $\frac{12}{36}$ | $\frac{4}{36}$ |
µãÆÀ ±¾Ì⿼²éÁËÏ໥¶ÔÁ¢Óë¶ÀÁ¢Ê¼þ¡¢»¥³âʼþ¡¢¹Åµä¸ÅÂʼÆË㹫ʽ¡¢Ëæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $f£¨\frac{¦Ð}{3}£©£¼\sqrt{3}f£¨\frac{¦Ð}{6}£©$ | B£® | $f£¨\frac{¦Ð}{6}£©£¼\sqrt{2}f£¨\frac{¦Ð}{4}£©$ | C£® | $f£¨\frac{¦Ð}{3}£©£¼f£¨\frac{¦Ð}{4}£©$ | D£® | $f£¨\frac{¦Ð}{4}£©£¼\sqrt{3}f£¨\frac{¦Ð}{3}£©$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [1£¬e] | B£® | $£¨{1+\frac{1}{e}£¬e}]$ | C£® | £¨0£¬e] | D£® | $[{1+\frac{1}{e}£¬e}]$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com