分析 当直线l的斜率不存在时,直线l的方程为:x=1,不符合题意;当直线l的斜率存在时,圆心到直线kx-y-k+1=0的距离d=$\frac{|k-2|}{\sqrt{{k}^{2}+1}}$=$\sqrt{5}$,解得k=-$\frac{1}{2}$,由此能求出直线l的方程.
解答 解:直线l:经过点(1,1)与圆(x-2)2+(y-3)2=9相交于A,B两点,|AB|=4,则圆心到直线的距离为$\sqrt{5}$,
当直线l的斜率不存在时,直线l的方程为:x=1,不符合题意;
当直线l的斜率存在时,设直线l:y=k(x-1)+1,即kx-y-k+1=0
圆心到直线kx-y-k+1=0的距离d=$\frac{|k-2|}{\sqrt{{k}^{2}+1}}$=$\sqrt{5}$,解得k=-$\frac{1}{2}$,
∴直线l的方程为x+2y-3=0.
故答案为:x+2y-3=0.
点评 本题考查直线方程的求法,是中档题,解题时要认真审题,注意圆的性质、点到直线的距离公式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 车牌尾号 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
| 限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com