精英家教网 > 高中数学 > 题目详情
17.如图,在四边形ABCD中,AB∥CD,∠BCD=$\frac{2π}{3}$,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF.
(1)求证:EF⊥平面BCF;
(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.

分析 (1)在梯形ABCD中,设AD=CD=BC=1,由题意求得AB=2,再由余弦定理求得AC2=3,满足AB2=AC2+BC2,得则BC⊥AC.再由CF⊥平面ABCD得AC⊥CF,由线面垂直的判定可得AC⊥平面BCF.进一步得到EF⊥平面BCF;
(2)分别以直线CA,CB,CF为x轴,y轴,z轴建立如图所示的空间直角坐标系,设AD=CD=BC=CF=1,令FM=λ($0≤λ≤\sqrt{3}$),得到C,A,B,M的坐标,求出平面MAB的一个法向量,由题意可得平面FCB的一个法向量,求出两法向量所成角的余弦值,可得当λ=0时,cosθ有最小值为$\frac{\sqrt{7}}{7}$,此时点M与点F重合.

解答 (1)证明:在梯形ABCD中,∵AB∥CD,设AD=CD=BC=1,
又∵$∠BCD=\frac{2π}{3}$,∴AB=2,
∴AC2=AB2+BC2-2AB•BC•cos60°=3.
∴AB2=AC2+BC2.则BC⊥AC.
∵CF⊥平面ABCD,AC?平面ABCD,
∴AC⊥CF,而CF∩BC=C,
∴AC⊥平面BCF.
∵EF∥AC,
∴EF⊥平面BCF;
(2)解:分别以直线CA,CB,CF为x轴,y轴,z轴建立如图所示的空间直角坐标系,
设AD=CD=BC=CF=1,令FM=λ($0≤λ≤\sqrt{3}$),
则C(0,0,0),A($\sqrt{3}$,0,0),B(0,1,0),M(λ,0,1),
∴$\overrightarrow{AB}$=(-$\sqrt{3}$,1,0),$\overrightarrow{BM}$=(λ,-1,1),
设$\overrightarrow{n}$=(x,y,z)为平面MAB的一个法向量,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=0}\\{\overrightarrow{n}•\overrightarrow{BM}=0}\end{array}\right.$得$\left\{\begin{array}{l}-\sqrt{3}x+y=0\\ λx-y+z=0\end{array}\right.$,取x=1,则$\overrightarrow{n}$=(1,$\sqrt{3}$,$\sqrt{3}-λ$),
∵$\overrightarrow{m}$=(1,0,0)是平面FCB的一个法向量,
∴cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}||\overrightarrow{m}|}$=$\frac{1}{\sqrt{1+3+(\sqrt{3}-λ)^{2}}×1}=\frac{1}{\sqrt{(λ-\sqrt{3})^{2}+4}}$.
∵$0≤λ≤\sqrt{3}$,∴当λ=0时,cosθ有最小值为$\frac{\sqrt{7}}{7}$,
∴点M与点F重合时,平面MAB与平面FCB所成二面角最大,此时二面角的余弦值为$\frac{\sqrt{7}}{7}$.

点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.过点(1,1)的直线l与圆(x-2)2+(y-3)2=9相交于A,B两点,当|AB|=4时,直线l的方程为x+2y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等差数列{an}中,a7=4,a8=1,则a10=(  )
A.-5B.-2C.7D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若对于任意实数m∈[0,1],总存在唯一实数x∈[-1,1],使得m+x2ex-a=0成立,则实数a的取值范围是(  )
A.[1,e]B.$({1+\frac{1}{e},e}]$C.(0,e]D.$[{1+\frac{1}{e},e}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设实数x,y满足$\left\{\begin{array}{l}x+y-6≥0\\ x+2y-14≤0\\ 2x+y-10≤0\end{array}\right.$,则2xy的最大值为(  )
A.25B.49C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某班开展一次智力竞赛活动,共a,b,c三个问题,其中题a满分是20分,题b,c满分都是25分.每道题或者得满分,或者得0分.活动结果显示,全班同学每人至少答对一道题,有1名同学答对全部三道题,有15名同学答对其中两道题.答对题a与题b的人数之和为29,答对题a与题c的人数之和为25,答对题b与题c的人数之和为20.则该班同学中只答对一道题的人数是4;该班的平均成绩是42.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若复数z满足3+zi=z-3i(i为虚数单位),则复数z的模|z|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.中国古代数学家名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”现有一个刍甍如图所示,四边形ABCD为正方形,四边形ABFE、CDEF为两个全等的等腰梯形,AB=4,EF$\underset{∥}{=}$$\frac{1}{2}$AB,若这个刍甍的体积为$\frac{40}{3}$,则异面直线AB与CF所成角的余弦值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+sin2x.
(1)求函数f(x)的最小正周期;
(2)若函数g(x)对任意x∈R,有g(x)=f(x+$\frac{π}{6}$),求函数g(x)在[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

同步练习册答案