精英家教网 > 高中数学 > 题目详情
12.设实数x,y满足$\left\{\begin{array}{l}x+y-6≥0\\ x+2y-14≤0\\ 2x+y-10≤0\end{array}\right.$,则2xy的最大值为(  )
A.25B.49C.12D.24

分析 作出不等式组对应的平面区域,利用基本不等式进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
由图象知y≤10-2x,
则2xy≤2x(10-2x)=4x(5-x))≤4($\frac{x+5-x}{2}$)2=25,
当且仅当x=$\frac{5}{2}$,y=5时,取等号,
经检验($\frac{5}{2}$,5)在可行域内,
故2xy的最大值为25,
故选:A.

点评 本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,短轴长为2.直线l:y=kx+m与椭圆C交于M、N两点,又l与直线y=$\frac{1}{2}x、y=-\frac{1}{2}$x分别交于A、B两点,其中点A在第一象限,点B在第二象限,且△OAB的面积为2(O为坐标原点).
(Ⅰ)求椭圆C的方程;
(Ⅱ)求$\overrightarrow{OM}•\overrightarrow{ON}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课时间为7:50~8:30,课间休息10分钟,某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率是(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD的底面ABCD是直角梯形,AB∥DC,AD⊥DC,侧面PDC⊥底面ABCD,△PDC是等边三角形,AB=AD=$\frac{1}{2}$CD=1,点E,F,G分别是棱PD,PC,BC的中点.
(Ⅰ)求证:AP∥平面EFG;
(Ⅱ)求二面角G-EF-D的大小;
(Ⅲ)在线段PB上存在一点Q,使PC⊥平面ADQ,且$\overrightarrow{PQ}$=λ$\overrightarrow{PB}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数不少于其他任何人)的概率是(  )
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四边形ABCD中,AB∥CD,∠BCD=$\frac{2π}{3}$,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF.
(1)求证:EF⊥平面BCF;
(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为了得到函数y=4sinxcosx,x∈R的图象,只要把函数y=sin2x-$\sqrt{3}$cos2x,x∈R图象上所有的点(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z满足2+zi=z-2i(i为虚数单位),则复数z的模|z|=(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若y=cos(2π-x),则y′=-sinx.

查看答案和解析>>

同步练习册答案