精英家教网 > 高中数学 > 题目详情
7.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数不少于其他任何人)的概率是(  )
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{3}{4}$

分析 利用隔板法得到共计有n=${C}_{5}^{2}$=10种领法,乙获得“最佳手气”的情况总数m=4,由此能求出乙获得“最佳手气”的概率.

解答 解:如下图,利用隔板法,

得到共计有n=${C}_{5}^{2}$=10种领法,
乙领2元获得“最佳手气”的情况有1种,
乙领3元获得“最佳手气”的情况有2种,
乙领4元获得“最佳手气”的情况有1种,
乙获得“最佳手气”的情况总数m=4,
∴乙获得“最佳手气”的概率p=$\frac{4}{10}$=$\frac{2}{5}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意隔板法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}$x2+mx+mlnx
(I)讨论函数f(x)的单调性;
(Ⅱ)当m=1时,若方程f(x)=$\frac{1}{2}$x2+ac在区间[$\frac{1}{e}$,+∞)上有唯一的实数解,求实数a的取值范围; 
(III)当m>0时,若对于区间[1,2]上的任意两个实数x1,x2,且x1<x2,都有|f(x1)-f(x2)|<x22-x12成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x,y满足$\left\{\begin{array}{l}{x-y+6≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$若目标函数Z=ax+y的最大值为3a+9,最小值为3a-3,则实数a的取值范围是(  )
A.{a|-1≤a≤1}B.{a|a≤-1}C.{a|a≤-1或a≥1}D.{a|a≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将5幅不同的冬奥会宣传作品排成前后两排展出,每排至少2幅,其中A,B两幅作品必须排在前排,那么不同的排法共有48种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等比数列{an}满足a1=$\frac{1}{2},{a_2}{a_8}=2{a_5}$+3,则a9=(  )
A.$-\frac{1}{2}$B.$\frac{9}{8}$C.648D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设实数x,y满足$\left\{\begin{array}{l}x+y-6≥0\\ x+2y-14≤0\\ 2x+y-10≤0\end{array}\right.$,则2xy的最大值为(  )
A.25B.49C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x+a)ln(x+a),g(x)=-$\frac{a}{2}{x^2}$+ax.
(1)函数h(x)=f(ex-a)+g'(ex),x∈[-1,1],求函数h(x)的最小值;
(2)对任意x∈[2,+∞),都有f(x-a-1)-g(x)≤0成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b=$\frac{5}{8}$a,A=2B,则cosA=$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在面积为1的正方形ABCD内部随机取一点p,则△PAB的面积大于等于$\frac{1}{3}$的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案