| A. | {a|-1≤a≤1} | B. | {a|a≤-1} | C. | {a|a≤-1或a≥1} | D. | {a|a≥1} |
分析 由约束条件作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合分类讨论进行求解.
解答 解:由z=ax+y得y=-ax+z,直线y=-ax+z是斜率为-a,y轴上的截距为z的直线,![]()
作出不等式组$\left\{\begin{array}{l}{x-y+6≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$对应的平面区域如图:
则A(3,9),B(-3,3),C(3,-3),
∵z=ax+y的最大值为3a+9,最小值为3a-3,
可知目标函数经过A取得最大值,经过C取得最小值,
若a=0,则y=z,此时z=ax+y经过A取得最大值,经过C取得最小值,满足条件,
若a>0,则目标函数斜率k=-a<0,
要使目标函数在A处取得最大值,在C处取得最小值,
则目标函数的斜率满足-a≥kBC=-1,
即a≤1,可得a∈(0,1].
若a<0,则目标函数斜率k=-a>0,
要使目标函数在A处取得最大值,在C处取得最小值,可得-a≤kBA=1
∴-1≤a<0,综上a∈[-1,1]
故选:A.
点评 本题主要考查线性规划的应用,根据条件确定A,B是最优解是解决本题的关键.注意要进行分类讨论,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -i | C. | -1 | D. | i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {4,5} | B. | {3,4,5} | C. | {x|3≤x<4} | D. | {x|3≤x≤5} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com