精英家教网 > 高中数学 > 题目详情
18.已知实数x,y满足$\left\{\begin{array}{l}{x-y+6≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$若目标函数Z=ax+y的最大值为3a+9,最小值为3a-3,则实数a的取值范围是(  )
A.{a|-1≤a≤1}B.{a|a≤-1}C.{a|a≤-1或a≥1}D.{a|a≥1}

分析 由约束条件作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合分类讨论进行求解.

解答 解:由z=ax+y得y=-ax+z,直线y=-ax+z是斜率为-a,y轴上的截距为z的直线,
作出不等式组$\left\{\begin{array}{l}{x-y+6≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$对应的平面区域如图:
则A(3,9),B(-3,3),C(3,-3),
∵z=ax+y的最大值为3a+9,最小值为3a-3,
可知目标函数经过A取得最大值,经过C取得最小值,
若a=0,则y=z,此时z=ax+y经过A取得最大值,经过C取得最小值,满足条件,
若a>0,则目标函数斜率k=-a<0,
要使目标函数在A处取得最大值,在C处取得最小值,
则目标函数的斜率满足-a≥kBC=-1,
即a≤1,可得a∈(0,1].
若a<0,则目标函数斜率k=-a>0,
要使目标函数在A处取得最大值,在C处取得最小值,可得-a≤kBA=1
∴-1≤a<0,综上a∈[-1,1]
故选:A.

点评 本题主要考查线性规划的应用,根据条件确定A,B是最优解是解决本题的关键.注意要进行分类讨论,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2lnx+$\frac{a}{x}$-2lna-k$\frac{x}{a}$
(1)若k=0,证明f(x)>0
(2)若f(x)≥0,求k的取值范围;并证明此时f(x)的极值存在且与a无关.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线y2=8x的一条弦AB经过焦点F,O为坐标原点,D为线段OB的中点,延长OA至点C,使|OA|=|AC|,过C,D向y轴作垂线,垂足分别为E,G,则|EG|的最小值为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在锐角△ABC中,D为AC边的中点,且BC=$\sqrt{2}BD=2\sqrt{2}$,O为△ABC外接圆的圆心,且cos∠AOC=-$\frac{3}{4}$.
(1)求∠ABC的余弦值,
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=($\frac{1+i}{\sqrt{2}}$)2(其中i为虚数单位),则$\overline{z}$=(  )
A.1B.-iC.-1D.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课时间为7:50~8:30,课间休息10分钟,某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率是(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是一个算法的程序框图,如果输入i=0,S=0,那么输出的结果为(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数不少于其他任何人)的概率是(  )
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|7<2x<33,x∈N},B={x|log3(x-1)<1},则A∩(∁RB)等于(  )
A.{4,5}B.{3,4,5}C.{x|3≤x<4}D.{x|3≤x≤5}

查看答案和解析>>

同步练习册答案