精英家教网 > 高中数学 > 题目详情
9.已知抛物线y2=8x的一条弦AB经过焦点F,O为坐标原点,D为线段OB的中点,延长OA至点C,使|OA|=|AC|,过C,D向y轴作垂线,垂足分别为E,G,则|EG|的最小值为4$\sqrt{2}$.

分析 设直线AB的方程为x=my+1,代入抛物线y2=8x,可得y2-8my-8=0,|EG|=$\frac{1}{2}$y2-2y1=$\frac{1}{2}$y2+$\frac{16}{{y}_{2}}$,利用基本不等式即可得出结论.

解答 解:设直线AB的方程为x=my+1,代入抛物线y2=8x,可得y2-8my-8=0,
设A(x1,y1),B(x2,y2),则y1+y2=8m,y1y2=-8,
∴|EG|=$\frac{1}{2}$y2-2y1=$\frac{1}{2}$y2+$\frac{16}{{y}_{2}}$≥4$\sqrt{2}$,当且仅当y2=4$\sqrt{2}$时,取等号,即|EG|的最小值为4$\sqrt{2}$,
故答案为:4$\sqrt{2}$.

点评 本题考查|EG|的最小值的求法,具体涉及到抛物线的简单性质,直线与抛物线的位置关系,解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.甲、乙、丙3位志愿者安排在周一至周六的六天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排放法共有(  )
A.20种B.30种C.40种D.60种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F2作直线A,B交双曲线右支于A,B两点,若|AF1|+|BF1|的最小值为11a,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}$x2+mx+mlnx
(I)讨论函数f(x)的单调性;
(Ⅱ)当m=1时,若方程f(x)=$\frac{1}{2}$x2+ac在区间[$\frac{1}{e}$,+∞)上有唯一的实数解,求实数a的取值范围; 
(III)当m>0时,若对于区间[1,2]上的任意两个实数x1,x2,且x1<x2,都有|f(x1)-f(x2)|<x22-x12成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|y=lg(x+1)},B={-2,-1,0,1},则(∁RA)∩B=(  )
A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知椭圆C:$\frac{x^2}{4}+{y^2}$=1,点O是坐标原点,点P是椭圆C上任意一点,且点M满足$\overrightarrow{OM}=λ\overrightarrow{OP}$(λ>1,λ是常数).当点P在椭圆C上运动时,点M形成的曲线为Cλ
(I)求曲线Cλ的轨迹方程;
(II)直线l是椭圆C在点P处的切线,与曲线Cλ的交点为A,B两点,探究△OAB的面积是否为定值.若是,求△OAB的面积,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系xOy中,以(-2,0)为圆心且与直线(3m+1)x+(1-2m)y-5=0(m∈R)相切的所有圆中,面积最大的圆的标准方程是(  )
A.(x+2)2+y2=16B.(x+2)2+y2=20C.(x+2)2+y2=25D.(x+2)2+y2=36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x,y满足$\left\{\begin{array}{l}{x-y+6≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$若目标函数Z=ax+y的最大值为3a+9,最小值为3a-3,则实数a的取值范围是(  )
A.{a|-1≤a≤1}B.{a|a≤-1}C.{a|a≤-1或a≥1}D.{a|a≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x+a)ln(x+a),g(x)=-$\frac{a}{2}{x^2}$+ax.
(1)函数h(x)=f(ex-a)+g'(ex),x∈[-1,1],求函数h(x)的最小值;
(2)对任意x∈[2,+∞),都有f(x-a-1)-g(x)≤0成立,求a的范围.

查看答案和解析>>

同步练习册答案