精英家教网 > 高中数学 > 题目详情
16.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b=$\frac{5}{8}$a,A=2B,则cosA=$\frac{7}{25}$.

分析 由已知及正弦定理,二倍角的正弦函数公式化简可得cosB=$\frac{4}{5}$,进而利用二倍角的余弦函数公式即可计算得解.

解答 解:∵A=2B,
∴sinA=sin2B=2sinBcosB,
∵b=$\frac{5}{8}$a,
∴由正弦定理可得:$\frac{a}{b}=\frac{8}{5}$=$\frac{sinA}{sinB}$=$\frac{2sinBcosB}{sinB}$=2cosB,
∴cosB=$\frac{4}{5}$,
∴cosA=cos2B=2cos2B-1=$\frac{7}{25}$.
故答案为:$\frac{7}{25}$.

点评 本题主要考查了正弦定理,二倍角的正弦函数公式,二倍角的余弦函数公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,在锐角△ABC中,D为AC边的中点,且BC=$\sqrt{2}BD=2\sqrt{2}$,O为△ABC外接圆的圆心,且cos∠AOC=-$\frac{3}{4}$.
(1)求∠ABC的余弦值,
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数不少于其他任何人)的概率是(  )
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为了得到函数y=4sinxcosx,x∈R的图象,只要把函数y=sin2x-$\sqrt{3}$cos2x,x∈R图象上所有的点(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某学校为了解本校学生的身体素质情况,决定在全校的1000名男生和800名女生中按分层抽样的方法抽取45名学生对他们课余参加体育锻炼时间进行问卷调查,将学生课余参加体育锻炼时间的情况分三类:A类(课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时),B类(课余参加体育锻炼但平均每周参加体育锻炼的时间不超过3小时),C类(课余不参加体育锻炼),调查结果如表:
  A类B类 C类 
 男生 18 x 3
 女生 10 8 y
(1)求出表中x、y的值;
(2)根据表格统计数据,完成下面的列联表,并判断是否有90%的把握认为课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时与性别有关;
  男生女生 总计 
 A类   
 B类和C类   
 总计   
(3)在抽取的样本中,从课余不参加体育锻炼学生中随机选取三人进一步了解情况,求选取三人中男女都有且男生比女生多的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k00.10 0.05 0.01 
 k0 2.706 3.841 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z满足2+zi=z-2i(i为虚数单位),则复数z的模|z|=(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|7<2x<33,x∈N},B={x|log3(x-1)<1},则A∩(∁RB)等于(  )
A.{4,5}B.{3,4,5}C.{x|3≤x<4}D.{x|3≤x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面直角坐标系xOy中,双曲线C的一个焦点为F(2,0),一条渐近线的倾斜角为60°,则C的标准方程为(  )
A.$\frac{x^2}{3}-{y^2}=1$B.$\frac{y^2}{3}-{x^2}=1$C.${x^2}-\frac{y^2}{3}=1$D.${y^2}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆x2+2y2=1的左、右焦点分别为F1、F2,过椭圆上任意一点P作切线l,记F1、F2到l的距离分别为d1、d2,则d1•d2=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.2D.1

查看答案和解析>>

同步练习册答案