分析 (Ⅰ)设H是AD的中点,连接EH,GH,推导出EF∥GH,从而E,F,G,H四点共面,再由PA∥EH,能证明PA∥平面EFG.
(Ⅱ)过点D作z轴与平面ABCD垂直,则z轴?平面PDC以DA,DC分别为x轴,y轴建立空间直角坐标系D-xyz,利用向量法能求出结果.
解答 证明:(Ⅰ)设H是AD的中点,连接EH,GH,![]()
∵E,F,G分别是PD,PC,BC的中点
∴EF∥CD,GH∥CD,∴EF∥GH,
∴E,F,G,H四点共面,…(2分)
∵PA∥EH,PA?平面EFGH,∴PA∥平面EFG.…(4分)
解:(Ⅱ)∵平面PDC⊥底面EFGH,AD⊥DC
∴AD⊥平面PDC,过点D作z轴与平面ABCD垂直,则z轴?平面PDC
以DA,DC分别为x轴,y轴建立空间直角坐标系D-xyz…(5分)
设平面EFD的法向量为$\overrightarrow m$,则$\overrightarrow m=(1,0,0)$…(6分)
设平面EFG的法向量为$\overrightarrow n=(x,y,z)$,
$G(\frac{1}{2},\frac{3}{2},0)$,$E(0,\frac{1}{2},\frac{{\sqrt{3}}}{2})$,$F(0,\frac{3}{2},\frac{{\sqrt{3}}}{2})$,
$\overrightarrow{EF}=(0,1,0)$,$\overrightarrow{GF}=(-\frac{1}{2},0,\frac{{\sqrt{3}}}{2})$,
则$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{EF}=0\\ \overrightarrow n•\overrightarrow{GF}=0\end{array}\right.$,故$\left\{\begin{array}{l}y=0\\-\frac{1}{2}x+\frac{{\sqrt{3}}}{2}z=0\end{array}\right.$∴取a=1,得$\overrightarrow n=(\sqrt{3},0,1)$…(8分)
$cos<\overrightarrow m,\overrightarrow n>=\frac{\overrightarrow m•\overrightarrow n}{{|{\overrightarrow m}||{\overrightarrow n}|}}=\frac{{\sqrt{3}}}{1×2}=\frac{{\sqrt{3}}}{2}$…(9分)
∴$<\overrightarrow m,\overrightarrow n>={30°}$,∴二面角G-EF-D的大小为30°.…(10分)
(Ⅲ)$P(0,1,\sqrt{3})$,B(1,1,0),A(1,0,0),C(0,2,0),
设Q(x,y,z),$\overrightarrow{PC}=(0,1,-\sqrt{3})$,$\overrightarrow{PB}=(1,0,-\sqrt{3})$,…(11分)
$\overrightarrow{PQ}=(x,y-1,z-\sqrt{3})=λ(1,0,-\sqrt{3})=(λ,0,-\sqrt{3}λ)$…(12分)
∴$Q(λ,1,\sqrt{3}-\sqrt{3}λ)$,$\overrightarrow{AQ}=(λ-1,-1,\sqrt{3}λ-\sqrt{3})$…(13分)
∵PC⊥平面ADQ,∴PC⊥AQ
∴$\overrightarrow{PC}•\overrightarrow{AQ}$=-1+3-3λ=0,解得$λ=\frac{2}{3}$…(14分)
点评 本题考查线面平行的证明,考查二面角的求法,考查满足线面垂直的线段和长的确定,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,e] | B. | $({1+\frac{1}{e},e}]$ | C. | (0,e] | D. | $[{1+\frac{1}{e},e}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 25 | B. | 49 | C. | 12 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com