精英家教网 > 高中数学 > 题目详情
17.若$α,β∈[-\frac{π}{2},\frac{π}{2}]$,且αsinα-βsinβ>0,则下列关系式:①α>β;②α<β;③α+β>0;④α2>β2;⑤α2≤β2其中正确的序号是:④.

分析 构造函数f(x)=xsinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],判断函数f(x)为偶函数,利用f′(x)判断f(x)=xsinx在x∈[0,$\frac{π}{2}$]上的单调性,从而选出正确答案.

解答 解:根据题意,令f(x)=xsinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],
∵f(-x)=-x•sin(-x)=x•sinx=f(x),
∴f(x)=xsinx,在x∈[-$\frac{π}{2}$,$\frac{π}{2}$]上为偶函数;
又f′(x)=sinx+xcosx,
∴当x∈[0,$\frac{π}{2}$],f′(x)>0,
∴f(x)=xsinx在x∈[0,$\frac{π}{2}$]单调递增;
同理可证偶函数f(x)=xsinx在x∈[-$\frac{π}{2}$,0]单调递减;
∴当0≤|β|<|α|≤$\frac{π}{2}$时,f(α)>f(β),即αsinα-βsinβ>0,反之也成立,
∴α2>β2,④正确;
其他命题不一定成立.
故答案为:④.

点评 本题考查了正弦函数的单调性,解题时应构造函数f(x)=xsinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],研究函数f(x)=xsinx的奇偶性与单调性解决问题,是难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知双曲线的两个焦点坐标是(0,±3),且该双曲线经过点($\sqrt{15}$,4),求这个双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{{b{\;}^2}}$=1(a>0,b>0)的左、右两焦点分别为F1(-1,0),F2(1,0),椭圆上有一点A与两焦点的连线构成的△AF1F2中,满足∠AF1F2=$\frac{π}{12},∠A{F_2}{F_1}=\frac{7π}{12}$.
(1)求椭圆C的方程;
(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称,设直线BC,CD,OB,OC的斜率分别为k1,k2,k3,k4,且k1•k2=k3•k4,求OB2+OC2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2$\sqrt{3}sin(wx+\frac{π}{6})coswx$(0<w<2),且f(x)的图象过点$(\frac{5π}{12},\frac{{\sqrt{3}}}{2})$.
(1)求w的值及函数f(x)的最小正周期;
(2)将y=f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,已知$g(\frac{α}{2})=\frac{{5\sqrt{3}}}{6}$,求$cos(2α-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1,F2,O为坐标原点,A为右顶点,P为双曲线左支上一点,若$\frac{{{{|{P{F_2}}|}^2}}}{{|{P{F_1}}|-|{OA}|}}$存在最小值为12a,则双曲线一三象限的渐近线倾斜角的余弦值的最小值是(  )
A.$\frac{1}{5}$B.$\frac{1}{2}$C.$\frac{{2\sqrt{6}}}{5}$D.$\frac{{\sqrt{3}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.向图所示的边长为1的正方形区域内任投一粒豆子,则该豆子落入阴影部分的概率为ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点O是△ABC的内心,∠BAC=60°,BC=1,则△BOC面积的最大值为$\frac{\sqrt{3}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线l与函数y=cosx(x∈[-$\frac{π}{2}$,$\frac{π}{2}$])图象相切于点A,且l∥CP,C(-$\frac{π}{2}$,0),P为图象的极值点,l与x轴交点为B,过切点A作AD⊥x轴,垂足为D,则$\overrightarrow{BA}•\overrightarrow{BD}$=$\frac{{π}^{2}-4}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过点(1,1)的直线l与圆(x-2)2+(y-3)2=9相交于A,B两点,当|AB|=4时,直线l的方程为x+2y-3=0.

查看答案和解析>>

同步练习册答案