精英家教网 > 高中数学 > 题目详情
14.在区间[-1,1]上任取一个数a,则曲线y=x2+x在点x=a处的切线的倾斜角为锐角的概率为$\frac{3}{4}$.

分析 求得函数的导数,可得曲线在x=a处切线的斜率,由题意可得斜率大于0,解不等式可得a的范围,再由几何概率的公式,求出区间的长度相除即可得到所求.

解答 解:y=x2+x导数为y′=2x+1,
则曲线y=x2+x在点x=a处的切线的斜率为k=2a+1,
倾斜角为锐角,即为2a+1>0,
解得a>-$\frac{1}{2}$,
由-1≤a≤1,可得-$\frac{1}{2}$<a≤1,
则切线的倾斜角为锐角的概率为$\frac{\frac{3}{2}}{2}$=$\frac{3}{4}$.
故答案为$\frac{3}{4}$.

点评 本题考查导数的应用:求切线的斜率和倾斜角,考查不等式的解法,同时考查几何概率的求法,注意运用区间的长度,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{a{x}^{2}}{{e}^{x}}$,直线y=$\frac{1}{e}$x为曲线y=f(x)的切线.
(1)求实数a的值;
(2)用min{m,n}表示m,n中的较小值,设函数g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),若函数h(x)=g(x)-cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2$\sqrt{3}sin(wx+\frac{π}{6})coswx$(0<w<2),且f(x)的图象过点$(\frac{5π}{12},\frac{{\sqrt{3}}}{2})$.
(1)求w的值及函数f(x)的最小正周期;
(2)将y=f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,已知$g(\frac{α}{2})=\frac{{5\sqrt{3}}}{6}$,求$cos(2α-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.向图所示的边长为1的正方形区域内任投一粒豆子,则该豆子落入阴影部分的概率为ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点O是△ABC的内心,∠BAC=60°,BC=1,则△BOC面积的最大值为$\frac{\sqrt{3}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知sinθ+2cosθ=0,则$\frac{1+sin2θ}{{{{cos}^2}θ}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线l与函数y=cosx(x∈[-$\frac{π}{2}$,$\frac{π}{2}$])图象相切于点A,且l∥CP,C(-$\frac{π}{2}$,0),P为图象的极值点,l与x轴交点为B,过切点A作AD⊥x轴,垂足为D,则$\overrightarrow{BA}•\overrightarrow{BD}$=$\frac{{π}^{2}-4}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若圆C:x2+y2+2x+2y-7=0关于直线ax+by+4=0对称,由点P(a,b)向圆C作切线,切点为A,则线段PA的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)为定义在$(0,\frac{π}{2})$上的函数,f'(x)是它的导函数,且$\frac{f'(x)}{tanx}<f(x)$恒成立,则(  )
A.$f(\frac{π}{3})<\sqrt{3}f(\frac{π}{6})$B.$f(\frac{π}{6})<\sqrt{2}f(\frac{π}{4})$C.$f(\frac{π}{3})<f(\frac{π}{4})$D.$f(\frac{π}{4})<\sqrt{3}f(\frac{π}{3})$

查看答案和解析>>

同步练习册答案