精英家教网 > 高中数学 > 题目详情
17.如图,在三棱锥ABC-A1B1C1中,侧面ACC1A1⊥底面ABC,△A1AC为等边三角形,AC⊥A1B.
(1)求证:AB=BC;
(2)若∠ABC=90°,求A1B与平面BCC1B1所成角的正弦值.

分析 (1)取AC的中点O,连接OA1,OB,推导出AC⊥OA1,AC⊥A1B,从而AC⊥平面OA1B,进而AC⊥OB,由点O为AC的中点,能证明AB=BC.
(2)以线段OB,OC,OA1所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系O-xyz,利用向量法能求出A1B与平面BCC1B1所成角的正弦值.

解答 解:(1)证明:取AC的中点O,连接OA1,OB,
∵点O为等边△A1AC中边AC的中点,
∴AC⊥OA1,∵AC⊥A1B,OA1∩A1B=A1
∴AC⊥平面OA1B,又OB?平面OA1B,
∴AC⊥OB,∵点O为AC的中点,∴AB=BC.
(2)由(1)知,AB=BC,又∠ABC=90°,故△ABC是以AC为斜边的等腰直角三角形,
∵A1O⊥AC,侧面ACC1A1O⊥底面上ABC,A1⊥底面ABC
以线段OB,OC,OA1所在的直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系O-xyz,
设AC=2,则A(0,-1,0),${A_1}(0,0,\sqrt{3})$,B(1,0,0),C(0,1,0),
∴$\overrightarrow{BC}=(-1,1,0)$,$\overrightarrow{B{B_1}}=\overrightarrow{A{A_1}}=(0,1,\sqrt{3})$,$\overrightarrow{{A_1}B}=(1,0,-\sqrt{3})$,
设平面BCC1B1的一个法向量$\overrightarrow{n_0}=({x_0},{y_0},{z_0})$,
则有$\left\{\begin{array}{l}\overrightarrow{n_0}•\overrightarrow{BC}=0\\ \overrightarrow{n_0}•\overrightarrow{B{B_1}}=0\end{array}\right.$,即$\left\{\begin{array}{l}-{x_0}+{y_0}=0\\{y_0}+\sqrt{3}{z_0}=0\end{array}\right.$,令${y_0}=\sqrt{3}$,
则${x_0}=\sqrt{3}$,z0=-1,∴$\overrightarrow{n_0}=(\sqrt{3},\sqrt{3},-1)$,
设A1B与平面BCC1B1所成角为θ,
则$sinθ=|cos<\overrightarrow{n_0},\overrightarrow{{A_1}B}>|=\frac{{\overrightarrow{n_0}•\overrightarrow{{A_1}B}}}{{|\overrightarrow{n_0}||\overrightarrow{{A_1}B}|}}=\frac{{\sqrt{21}}}{7}$.
∴A1B与平面BCC1B1所成角的正弦值为$\frac{\sqrt{21}}{7}$.

点评 本题考查两线段相等的证明,考查线面角、空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数形结合思想、化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.从含有质地均匀且大小相同的2个红球、n个白球的口袋中随机取出一球,若取到红球的概率是$\frac{2}{5}$,则取得白球的概率等于(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,∠A=$\frac{π}{3}$,O为平面内一点.且|$\overrightarrow{OA}|=|\overrightarrow{OB}|=|\overrightarrow{OC}$|,M为劣弧$\widehat{BC}$上一动点,且$\overrightarrow{OM}=p\overrightarrow{OB}+q\overrightarrow{OC}$.则p+q的取值范围为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在数列{an}中,设f(n)=an,且f(n)满足f(n+1)-2f(n)=2n(n∈N*),且a1=1.
(1)设bn=$\frac{{a}_{n}}{{2}^{n-1}}$,证明数列{bn}为等差数列;
(2)求数列{3an-1}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,D,E分别为BC,AB的中点,F为AD的中点,若$\overrightarrow{AB}•\overrightarrow{AC}=-1$,AB=2AC=2,则$\overrightarrow{CE}•\overrightarrow{AF}$的值为(  )
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{1}{8}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数f(x)=cos2x的图象向右平移$\frac{π}{3}$个单位得到g(x)的图象,若g(x)在(-2m,-$\frac{π}{6}$)和(3m,$\frac{5π}{6}$)上都单调递减,则实数m的取值范围为(  )
A.[$\frac{π}{9}$,$\frac{5π}{18}$)B.[$\frac{π}{9}$,$\frac{π}{3}$)C.($\frac{π}{12}$,$\frac{5π}{18}$)D.[$\frac{π}{18}$,$\frac{5π}{12}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若变量x,y满足$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+3≥0}\\{x≥1}\end{array}\right.$,目标函数z=2ax+by(a>0,b>0)取得最大值的是6,则$\frac{1}{a}+\frac{2}{b}$的最小值为7+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{1-{2}^{x}}{1+{2}^{x}}$•sin(cosx)的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow{AB}$=(6,1),$\overrightarrow{CD}$=(x,-3),若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,则x=-18.

查看答案和解析>>

同步练习册答案