精英家教网 > 高中数学 > 题目详情
14.已知cos($\frac{π}{2}$+α)=$\frac{2\sqrt{2}}{3}$,|α|<$\frac{π}{2}$,则tanα等于(  )
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{4}$

分析 由已知利用诱导公式可求sinα,进而利用同角三角函数基本关系式可求cosα,tanα的值.

解答 解:∵cos($\frac{π}{2}$+α)=-sinα=$\frac{2\sqrt{2}}{3}$,|α|<$\frac{π}{2}$,
∴sinα=-$\frac{2\sqrt{2}}{3}$,cosα=$\sqrt{1-co{s}^{2}α}$=$\frac{1}{3}$,
∴tanα=$\frac{sinα}{cosα}$=-2$\sqrt{2}$.
故选:A.

点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在复平面内,复数z对应的点是Z(1,-2),则复数z的共轭复数$\overline z$=1+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|-1≤x≤2},B={y|y=x2,x∈A},则A∩B=(  )
A.[-1,0]B.[0,2]C.[2,4]D.[-1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x<1}\\{4(x+a)(x+2a),x≥1}\end{array}\right.$,若f(x)恰有2个零点,则实数a的取值范围是(-∞,-2]∪(-1,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(x-2)3(x+1)4的展开式中x2的系数为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,AB⊥AC,AB=$\frac{1}{t}$,AC=t,P是△ABC所在平面内一点,若$\overrightarrow{AP}$=$\frac{4\overrightarrow{AB}}{|\overrightarrow{AB}|}+\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$,则△PBC面积的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.四面体A-BCD中,AB=CD=10,AC=BD=2$\sqrt{34}$,AD=BC=2$\sqrt{41}$,则四面体A-BCD外接球的表面积为(  )
A.50πB.100πC.200πD.300π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.递增数列{an}的前n项和为Sn,若(2λ+1)Sn=λan+2,则实数λ的取值范围是$(-1,\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{{\sqrt{3}c-a}}{b}=\frac{cosA}{cosB}$.
(Ⅰ)求sinB的值;
(Ⅱ)若a=2$\sqrt{3}$,b=2$\sqrt{6}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案