精英家教网 > 高中数学 > 题目详情
3.递增数列{an}的前n项和为Sn,若(2λ+1)Sn=λan+2,则实数λ的取值范围是$(-1,\frac{1}{2})$.

分析 利用递推关系可得:a1=$\frac{2}{λ+1}$(λ≠-1),$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{-λ}{λ+1}$.再利用单调性即可得出.

解答 解:∵(2λ+1)Sn=λan+2,∴n≥2时,(2λ+1)Sn-1=λan-1+2,相减可得:
n=1时,(2λ+1)a1=λa1+2,解得a1=$\frac{2}{λ+1}$(λ≠-1).
$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{-λ}{λ+1}$.
①若a1=$\frac{2}{λ+1}$>0,则$\frac{-λ}{λ+1}$>1,解得$-1<λ<\frac{1}{2}$.
②若a1=$\frac{2}{λ+1}$<0,则0<$\frac{-λ}{λ+1}$<1,解得λ∈∅.
综上可得:λ∈$(-1,\frac{1}{2})$.
故答案为:$(-1,\frac{1}{2})$.

点评 本题考查了数列递推关系、数列的单调性、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设函数$f(x)=sin({x+\frac{π}{4}})+cos({x-\frac{π}{4}})$,则(  )
A.$f(x)=-f({x+\frac{π}{2}})$B.$f(x)=f({-x+\frac{π}{2}})$C.$f(x)•f({x+\frac{π}{2}})=1$D.$f(x)=-f({-x+\frac{π}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知cos($\frac{π}{2}$+α)=$\frac{2\sqrt{2}}{3}$,|α|<$\frac{π}{2}$,则tanα等于(  )
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\frac{{2}^{x}}{{2}^{x}+1}$+ax(a∈R),若f(ln3)=3,则f(ln$\frac{1}{3}$)=(  )
A.-2B.-3C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}是等差数列,首项a1=2,且a3是a2与a4+1的等比中项.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2}{(n+3)({a}_{n}+2)}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≥0\\ 2x-y-5≤0\end{array}\right.$,若使得目标函数z=ax+y取最大值的最优解有无数个,则实数a的值是(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆C过抛物线y2=4x的焦点,且圆心在此抛物线的准线上,若圆C的圆心不在x轴上,且与直线x+$\sqrt{3}$y-3=0相切,则圆C的半径为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.圆(x+1)2+y2=2的圆心到直线y=2x+3的距离为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\sqrt{5}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.向量$\overrightarrow a=(2,1),\overrightarrow b=(-1,2)$,则$(\overrightarrow a+\overrightarrow b)(\overrightarrow a-\overrightarrow b)$=0.

查看答案和解析>>

同步练习册答案