精英家教网 > 高中数学 > 题目详情
15.已知圆C过抛物线y2=4x的焦点,且圆心在此抛物线的准线上,若圆C的圆心不在x轴上,且与直线x+$\sqrt{3}$y-3=0相切,则圆C的半径为14.

分析 求出抛物线的准线方程x=-1,设圆心坐标(-1,h),根据切线的性质列方程解出h,从而可求得圆的半径.

解答 解:抛物线y2=4x的焦点为F(1,0),准线方程为x=-1,
设圆C的圆心为C(-1,h),则圆C的半径r=$\sqrt{{h}^{2}+4}$,
∵直线x+$\sqrt{3}$y-3=0与圆C相切,
∴圆心C到直线的距离d=r,即$\frac{|\sqrt{3}h-4|}{2}$=$\sqrt{{h}^{2}+4}$,
解得h=0(舍)或h=-8$\sqrt{3}$.
∴r=$\sqrt{192+4}$=14.
故答案为:14.

点评 本题考查了抛物线的性质,直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|-1≤x≤2},B={y|y=x2,x∈A},则A∩B=(  )
A.[-1,0]B.[0,2]C.[2,4]D.[-1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.四面体A-BCD中,AB=CD=10,AC=BD=2$\sqrt{34}$,AD=BC=2$\sqrt{41}$,则四面体A-BCD外接球的表面积为(  )
A.50πB.100πC.200πD.300π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.递增数列{an}的前n项和为Sn,若(2λ+1)Sn=λan+2,则实数λ的取值范围是$(-1,\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数据x,y的取值如表:
x12345
y13.2m14.215.416.4
从散点图可知,y与x呈线性相关关系,已知第四组数据在回归直线$\hat y=0.8x+\hat a$上,则m的取值为13.8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,双曲线以A,B为焦点,且与线段CD(包括端点C、D)有两个交点,则该双曲线的离心率的取值范围是[$\sqrt{3}$+1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知z=x2+y2,其中实数x,y满足$\left\{\begin{array}{l}-x+y≤1\\ x+2y≥2\\ x-2≤0\end{array}\right.$,则z的最小值是(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{7}{9}$C.$\frac{4}{5}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{{\sqrt{3}c-a}}{b}=\frac{cosA}{cosB}$.
(Ⅰ)求sinB的值;
(Ⅱ)若a=2$\sqrt{3}$,b=2$\sqrt{6}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(1,2),若向量$\overrightarrow{a}$-λ$\overrightarrow{b}$与向量$\overrightarrow{c}$=(1,-2)垂直,则实数λ=-$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案