精英家教网 > 高中数学 > 题目详情
18.已知数列{an}是等差数列,首项a1=2,且a3是a2与a4+1的等比中项.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2}{(n+3)({a}_{n}+2)}$,求数列{bn}的前n项和Sn

分析 (1)设等差数列的公差为d,首项a1=2,且a3是a2与a4+1的等比中项即可求出公差d,再写出通项公式即可,
(2)化简bn根据式子的特点进行裂项,再代入数列{bn}的前n项和Sn,利用裂项相消法求出Sn

解答 解:(1)设等差数列{an}的公差为d,由a1=2,且a3是a2与a4+1的等比中项.
∴(2+2d)2=(3+3d)(2+d),
解得d=2,
∴an=a1+(n-1)d=2+2(n-1)=2n,
(2)bn=$\frac{2}{(n+3)({a}_{n}+2)}$=$\frac{2}{(n+3)(2n+2)}$=$\frac{1}{(n+1)(n+3)}$=$\frac{1}{2}$($\frac{1}{n+1}$-$\frac{1}{n+3}$),
∴Sn=$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{4}$-$\frac{1}{6}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$+$\frac{1}{n+1}$-$\frac{1}{n+3}$)=$\frac{1}{2}$($\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{n+2}$-$\frac{1}{n+3}$)=$\frac{5}{12}$-$\frac{2n+5}{2(n+2)(n+3)}$

点评 本题考查了等差数列的通项公式及前n项和公式,以及裂项相消法求数列的前n项和,考查了基础知识和运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.将一根长为10米的木棒截成三段,则每段木棒长不低于1米的概率为(  )
A.$\frac{8}{25}$B.$\frac{16}{25}$C.$\frac{49}{100}$D.$\frac{49}{200}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(x-2)3(x+1)4的展开式中x2的系数为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.四面体A-BCD中,AB=CD=10,AC=BD=2$\sqrt{34}$,AD=BC=2$\sqrt{41}$,则四面体A-BCD外接球的表面积为(  )
A.50πB.100πC.200πD.300π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.过椭圆C:$\frac{{x}^{2}}{2}$+y2=1的右焦点F的直线l交椭圆于A,B两点,M是AB的中点.
(1)求动点M的轨迹方程;
(2)过点M且与直线l垂直的直线和坐标轴分别交于D,E两点,记△MDF的面积为S1,△ODE的面积为S2,试问:是否存在直线l,使得S1=S2?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.递增数列{an}的前n项和为Sn,若(2λ+1)Sn=λan+2,则实数λ的取值范围是$(-1,\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数据x,y的取值如表:
x12345
y13.2m14.215.416.4
从散点图可知,y与x呈线性相关关系,已知第四组数据在回归直线$\hat y=0.8x+\hat a$上,则m的取值为13.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知z=x2+y2,其中实数x,y满足$\left\{\begin{array}{l}-x+y≤1\\ x+2y≥2\\ x-2≤0\end{array}\right.$,则z的最小值是(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{7}{9}$C.$\frac{4}{5}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$n=3\int_{-\frac{π}{2}}^{\frac{π}{2}}{(sinx+cosx)dx}$,则${(y+\frac{2}{y})^n}$的展开式中的常数项为160.

查看答案和解析>>

同步练习册答案