精英家教网 > 高中数学 > 题目详情
17.已知由小到大排列的一组数据7,8,a,12,13的平均数为10,则方差为$\frac{26}{5}$.

分析 根据题意,由平均数公式可得$\frac{7+8+a+12+13}{5}$=10,解可得x=10,进而由方差公式计算可得答案.

解答 解:根据题意,一组数据7,8,a,12,13的平均数为10,
则有$\frac{7+8+a+12+13}{5}$=10,
解可得a=10;
则其方差S2=$\frac{(7-10)^{2}+(8-10)^{2}+(10-10)^{2}+(12-10)^{2}+(13-10)^{2}}{5}$=$\frac{26}{5}$;
故答案为:$\frac{26}{5}$.

点评 本题考查数据的方差与平均数,关键是掌握数据的方差、平均数的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{cosB}{b}$+$\frac{cosC}{c}$=$\frac{2\sqrt{3}sinA}{3sinC}$.
(1)求b的值;
(2)若cosB+$\sqrt{3}$sinB=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≥0\\ 2x-y-5≤0\end{array}\right.$,若使得目标函数z=ax+y取最大值的最优解有无数个,则实数a的值是(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线x2=2py和$\frac{{x}^{2}}{2}$-y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0,$\frac{P}{2}$),若$\sqrt{2}$|PQ|=$\sqrt{3}$|PF|,则抛物线的方程是(  )
A.x2=4yB.x2=2$\sqrt{3}$yC.x2=6yD.x2=2$\sqrt{2}$y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.圆(x+1)2+y2=2的圆心到直线y=2x+3的距离为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\sqrt{5}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆C:x2+y2+2x-8y+m=0与抛物线上E:y2=8x的准线l相切,抛物线E上的点P到准线l的距离为d,Q为圆C上任意一点,则|PQ|+d的最小值等于(  )
A.3B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.高三学生小李计划在2017年高考结束后,和其他小伙伴一块儿进行旅游,有3个自然风光景点A,B,C和3个人文历史景点a,b,c可供选择,由于时间和距离原因,只能从中任取4个景点进行参观,其中景点A不能第一个参观,且最后参观的是人文历史景点,则不同的旅游顺序有(  )
A.54种B.72种C.120种D.144种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.等差数列{an}中,a3+a4=4,a5+a7=6.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=an•5n,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点M(-3,-1),若函数y=tan$\frac{π}{4}$x(x∈(-2,2))的图象与直线y=1交于点A,则|MA|=2$\sqrt{5}$.

查看答案和解析>>

同步练习册答案