精英家教网 > 高中数学 > 题目详情
14.设$a=\int_0^π{({sinx+cosx})dx}$,且${({{x^2}-\frac{1}{ax}})^n}$的展开式中只有第4项的二项式系数最大,那么展开式中的所有项的系数之和是(  )
A.1B.$\frac{1}{256}$C.64D.$\frac{1}{64}$

分析 利用定积分求出a的值,再根据题意求出n的值,令x=1求得展开式中的所有项的系数之和.

解答 解:$a=\int_0^π{({sinx+cosx})dx}$=(-cosx+sinx)${|}_{0}^{π}$=2,
∴${({{x^2}-\frac{1}{ax}})^n}$=${{(x}^{2}-\frac{1}{2x})}^{n}$;
其展开式中只有第4项的二项式系数最大,
∴展开式中共有7项,∴n=6;
令x=1,得展开式中的所有项的系数之和是
${(1-\frac{1}{2})}^{6}$=$\frac{1}{64}$.
故选:D.

点评 本题考查了二项式定理与定积分的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为π,且其图象向右平移$\frac{π}{6}$个单位后得到函数g(x)=sinωx的图象,则φ等于(  )
A.-$\frac{π}{3}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面直角坐标系xOy中,将不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-2≤0}\\{y≥0}\end{array}\right.$表示的平面区域绕x轴旋转一周所形成的几何体的表面积是(  )
A.B.($\sqrt{2}$+$\sqrt{5}$+1)πC.(2$\sqrt{2}$+2$\sqrt{5}$)πD.($\sqrt{2}$+$\sqrt{5}$)π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:实数的平方是非负数,则下列结论正确的是(  )
A.命题¬p是真命题
B.命题p是特称命题
C.命题p是全称命题
D.命题p既不是全称命题也不是特称命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数$f(x)=sin({x+\frac{π}{4}})+cos({x-\frac{π}{4}})$,则(  )
A.$f(x)=-f({x+\frac{π}{2}})$B.$f(x)=f({-x+\frac{π}{2}})$C.$f(x)•f({x+\frac{π}{2}})=1$D.$f(x)=-f({-x+\frac{π}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设圆${F_1}:{x^2}+{y^2}+4x=0$的圆心为F1,直线l过点F2(2,0)且不与x轴、y轴垂直,且与圆F1于C,D两点,过F2作F1C的平行线交直线F1D于点E,
(1)证明||EF1|-|EF2||为定值,并写出点E的轨迹方程;
(2)设点E的轨迹为曲线Γ,直线l交Γ于M,N两点,过F2且与l垂直的直线与圆F1交于P,Q两点,求△PQM与△PQN的面积之和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若等比数列{an}的前n项和${S_n}={2^{n-1}}+a$,则a3a5=(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{cosB}{b}$+$\frac{cosC}{c}$=$\frac{2\sqrt{3}sinA}{3sinC}$.
(1)求b的值;
(2)若cosB+$\sqrt{3}$sinB=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≥0\\ 2x-y-5≤0\end{array}\right.$,若使得目标函数z=ax+y取最大值的最优解有无数个,则实数a的值是(  )
A.2B.-2C.1D.-1

查看答案和解析>>

同步练习册答案