精英家教网 > 高中数学 > 题目详情
9.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是互相垂直的两个单位向量,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=4$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,则(  )
A.$\overrightarrow{a}$∥$\overrightarrow{b}$B.$\overrightarrow{a}$⊥$\overrightarrow{b}$C.|$\overrightarrow{a}$|=2|$\overrightarrow{b}$||D.<$\overrightarrow{a}$,$\overrightarrow{b}$>=60°

分析 经计算可知$\overrightarrow{a}•\overrightarrow{b}$=0,从而两向量垂直.

解答 解:∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是互相垂直的两个单位向量,
∴$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=0,${\overrightarrow{{e}_{1}}}^{2}$=${\overrightarrow{{e}_{2}}}^{2}$=1,
∴$\overrightarrow{a}•\overrightarrow{b}$=$\overrightarrow{a}$=($\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$)•(4$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$)=4${\overrightarrow{{e}_{1}}}^{2}$+6$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$-4$\overrightarrow{{e}_{2}}$2=0,
$\overrightarrow{a}⊥\overrightarrow{b}$.
故选:B.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x-y-1≤0}\\{x+y+1≥0}\end{array}\right.$,则z=$\frac{y}{x+1}$的取值范围为(  )
A.[-1,$\frac{1}{2}$]B.(-∞,-1]∪[$\frac{1}{2}$,+∞)C.[0,$\frac{4}{3}$]D.(-∞,-2]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.为了得到函数$y=2sin(x+\frac{π}{6})cos(x+\frac{π}{6})$的图象,只需把函数y=sin2x的图象上所有的点(  )
A.向左平行移动$\frac{π}{12}$个单位长度B.向右平行移动$\frac{π}{12}$个单位长度
C.向左平行移动$\frac{π}{6}$个单位长度D.向右平行移动$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}为等差数列,且a2016+a2018=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,则a2017的值为(  )
A.$\frac{π}{2}$B.C.π2D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为π,且其图象向右平移$\frac{π}{6}$个单位后得到函数g(x)=sinωx的图象,则φ等于(  )
A.-$\frac{π}{3}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知i是虚数单位,则复数$\frac{1-i}{1+i}$在复平面上所对应的点的坐标是(0,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x+a)ln(a-x).
(Ⅰ)当a=1时,求曲线y=f(x)在x=0处的切线方程;
(Ⅱ)当a=e时,求证:函数f(x)在x=0处取得最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆C1:x2+y2=r2(r>0)与直线l0:y=$\frac{1}{2}x+\frac{3}{2}\sqrt{5}$相切,点A为圆C1上一动点,AN⊥x轴于点N,且动点M满足$\overrightarrow{OM}+2\overrightarrow{AM}=({2\sqrt{2}-2})\overrightarrow{ON}$,设动点M的轨迹为曲线C.
(1)求动点M的轨迹曲线C的方程;
(2)若直线l与曲线C相交于不同的两点P、Q且满足以PQ为直径的圆过坐标原点O,求线段PQ长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设圆${F_1}:{x^2}+{y^2}+4x=0$的圆心为F1,直线l过点F2(2,0)且不与x轴、y轴垂直,且与圆F1于C,D两点,过F2作F1C的平行线交直线F1D于点E,
(1)证明||EF1|-|EF2||为定值,并写出点E的轨迹方程;
(2)设点E的轨迹为曲线Γ,直线l交Γ于M,N两点,过F2且与l垂直的直线与圆F1交于P,Q两点,求△PQM与△PQN的面积之和的取值范围.

查看答案和解析>>

同步练习册答案