精英家教网 > 高中数学 > 题目详情
18.已知圆C1:x2+y2=r2(r>0)与直线l0:y=$\frac{1}{2}x+\frac{3}{2}\sqrt{5}$相切,点A为圆C1上一动点,AN⊥x轴于点N,且动点M满足$\overrightarrow{OM}+2\overrightarrow{AM}=({2\sqrt{2}-2})\overrightarrow{ON}$,设动点M的轨迹为曲线C.
(1)求动点M的轨迹曲线C的方程;
(2)若直线l与曲线C相交于不同的两点P、Q且满足以PQ为直径的圆过坐标原点O,求线段PQ长度的取值范围.

分析 (1)设动点M(x,y),A(x0,y0),由于AN⊥x轴于点N.推出N(x0,0).通过直线与圆相切,求出圆的方程,然后转化求解曲线C的方程.
(2)①假设直线l的斜率存在,设其方程为y=kx+m,设P(x1,y1),Q(x2,y2),联立直线与椭圆方程,结合韦达定理,通过$\overrightarrow{OP}•\overrightarrow{OQ}=0$,以及弦长公式,利用基本不等式求出范围.②若直线l的斜率不存在,设OP所在直线方程为y=x,类似①求解即可.

解答 解:(I)设动点M(x,y),A(x0,y0),由于AN⊥x轴于点N.∴N(x0,0).
又圆${C_1}:{x^2}+{y^2}={r^2}(r>0)$与直线${l_0}:y=\frac{1}{2}x+\frac{3}{2}\sqrt{5}$即$x-2y+3\sqrt{5}=0$相切,∴$r=\frac{{|{3\sqrt{5}}|}}{{\sqrt{1+4}}}=3$.
∴圆${C_1}:{x^2}+{y^2}=9$.
由题意,$\overrightarrow{OM}+2\overrightarrow{AM}=(2\sqrt{2}-2)\overrightarrow{ON}$,得$(x,y)+2(x-{x_0},y-{y_0})=(2\sqrt{2}-2)({x_0},0)$,
∴$(3x-2{x_0},3y-2{y_0})=((2\sqrt{2}-2){x_0},0)$.
∴$\left\{\begin{array}{l}3x-2{x_0}=(2\sqrt{2}-2){x_0}\\ 3y-2{y_0}=0\end{array}\right.$,
即∴$\left\{\begin{array}{l}{x_0}=\frac{3x}{{2\sqrt{2}}}\\{y_0}=\frac{3y}{2}.\end{array}\right.$
将$A(\frac{3x}{{2\sqrt{2}}},\frac{3y}{2})$代入x2+y2=9,得曲线C的方程为$\frac{x^2}{8}+\frac{y^2}{4}=1$.
(II)(1)假设直线l的斜率存在,设其方程为y=kx+m,设P(x1,y1),Q(x2,y2),
联立$\left\{\begin{array}{l}y=kx+m\\ \frac{x^2}{8}+\frac{y^2}{4}=1\end{array}\right.$,可得(1+2k2)x2+4kmx+2m2-8=0.
由求根公式得${x_1}+{x_2}=-\frac{4km}{{1+2{k^2}}},{x_1}{x_2}=\frac{{2{m^2}-8}}{{1+2{k^2}}}$.(*)
∵以PQ为直径的圆过坐标原点O,∴$\overrightarrow{OP}⊥\overrightarrow{OQ}$.即$\overrightarrow{OP}•\overrightarrow{OQ}=0$.
∴x1x2+y1y2=0.即∴x1x2+(kx1+m)(kx2+m)=0.
化简可得,$({k^2}+1){x_1}{x_2}+km({x_1}+{x_2})+{m^2}=0$.
将(*)代入可得$\frac{{3{m^2}-8{k^2}-8}}{{1+2{k^2}}}=0$,即3m2-8k2-8=0.
即${m^2}=\frac{{8({k^2}+1)}}{3}$,又$|{PQ}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|=\sqrt{1+{k^2}}\frac{{\sqrt{64{k^2}-8{m^2}+32}}}{{1+2{k^2}}}$.
将${m^2}=\frac{{8({k^2}+1)}}{3}$代入,可得$|{PQ}|=\sqrt{1+{k^2}}\frac{{\sqrt{\frac{{2×64{k^2}}}{3}+\frac{32}{3}}}}{{1+2{k^2}}}=\sqrt{\frac{32}{3}}•\sqrt{\frac{{(4{k^2}+1)(1+{k^2})}}{{{{(1+2{k^2})}^2}}}}=\sqrt{\frac{32}{3}}\sqrt{1+\frac{k^2}{{1+4{k^4}+4{k^2}}}}$
=$\sqrt{\frac{32}{3}}\sqrt{1+\frac{1}{{\frac{1}{k^2}+4{k^2}+4}}}≤2\sqrt{3}$.
∴当且仅当$\frac{1}{k^2}=4{k^2}$,即$k=±\frac{{\sqrt{2}}}{2}$时等号成立.又由$\frac{k^2}{{1+4{k^4}+4{k^2}}}≥0$,∴$|{PQ}|≥\sqrt{\frac{32}{3}}=\frac{{4\sqrt{6}}}{3}$,
∴$\frac{{4\sqrt{6}}}{3}≤|{PQ}|≤2\sqrt{3}$.
(2)若直线l的斜率不存在,因以PQ为直径的圆过坐标原点O,故可设OP所在直线方程为y=x,
联立$\left\{\begin{array}{l}y=x\\ \frac{x^2}{8}+\frac{y^2}{4}=1\end{array}\right.$解得$P(\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3})$,同理求得$Q(\frac{{2\sqrt{6}}}{3},-\frac{{2\sqrt{6}}}{3})$,
故$|{PQ}|=\frac{{4\sqrt{6}}}{3}$.综上,得$\frac{{4\sqrt{6}}}{3}≤|{PQ}|≤2\sqrt{3}$.

点评 本题考查圆锥曲线的轨迹方程的求法,直线与椭圆的位置关系的应用,存在性问题的解题策略,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是互相垂直的两个单位向量,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=4$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,则(  )
A.$\overrightarrow{a}$∥$\overrightarrow{b}$B.$\overrightarrow{a}$⊥$\overrightarrow{b}$C.|$\overrightarrow{a}$|=2|$\overrightarrow{b}$||D.<$\overrightarrow{a}$,$\overrightarrow{b}$>=60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题p:对任意x∈R,总有2x>x2;q:“ab>4”是“a>2,b>2”的充分不必要条件,则下列命题为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an},且a6+a8=$\int_0^4{\sqrt{16-{x^2}}dx}$,则a8(a4+2a6+a8)的值为(  )
A.π2B.2C.2D.16π2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(4,2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)等于(  )
A.5B.10C.-$\frac{5}{4}$D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是等比数列,an>0,a3=12,且a2,a4,a2+36成等差数列.
(1)求数列{an}的通项公式;
(2)设{bn}是等差数列,且b3=a3,b9=a5,求b3+b5+b7+…+b2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点P是直线x-y-2=0上的动点,过点P作抛物线C:x2=2py(0<p<4)的两条切线,切点分别为A、B,线段AB的中点为M,连接PM,交抛物线C于点N,若$\overrightarrow{PM}$=λ$\overrightarrow{PN}$,则λ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC中,D为BC边上一点,∠BAD=∠CAD,|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2,∠BAC=$\frac{π}{3}$,则$\overrightarrow{AD}•\overrightarrow{BC}$=(  )
A.$-\frac{8}{5}$B.$\frac{9}{5}$C.$-\frac{9}{5}$D.$\frac{8}{5}$

查看答案和解析>>

同步练习册答案