精英家教网 > 高中数学 > 题目详情
10.数列{an}满足a1=2,an+1=$\frac{2(n+2)}{n+1}$an(n∈N*),则$\frac{{a}_{2017}}{{a}_{1}+{a}_{2}+…+{a}_{2016}}$=$\frac{1009}{1008}$.

分析 数列{an}满足a1=2,an+1=$\frac{2(n+2)}{n+1}$an(n∈N*),可得$\frac{{a}_{n+1}}{n+2}$=2•$\frac{{a}_{n}}{n+1}$,$\frac{{a}_{1}}{1+1}$=1.利用等比数列的通项公式可得:an=(n+1)•2n-1.再利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:∵数列{an}满足a1=2,an+1=$\frac{2(n+2)}{n+1}$an(n∈N*),
∴$\frac{{a}_{n+1}}{n+2}$=2•$\frac{{a}_{n}}{n+1}$,$\frac{{a}_{1}}{1+1}$=1.
∴$\frac{{a}_{n}}{n+1}$=2n-1,即an=(n+1)•2n-1
设其前n项和为Sn,则Sn=2+3×2+4×22+…+(n+1)•2n-1
∴2Sn=2×2+3×22+…+n•2n-1+(n+1)•2n
∴-Sn=2+2+22+…+2n-1-(n+1)•2n=1+$\frac{{2}^{n}-1}{2-1}$-(n+1)•2n
∴Sn=n•2n
则$\frac{{a}_{2017}}{{a}_{1}+{a}_{2}+…+{a}_{2016}}$=$\frac{2018×{2}^{2016}}{2016×{2}^{2016}}$=$\frac{1009}{1008}$.
故答案为:$\frac{1009}{1008}$.

点评 本题考查了“错位相减法”、等比数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x+3|+|2x-4|.
(1)当x∈[-3,3]时,解关于x的不等式f(x)<6;
(2)求证:?t∈R,f(x)≥4-2t-t2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知随圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与过原点的直线交于A、B两点,右焦点为F,∠AFB=120°,若△AFB的面积为4$\sqrt{3}$,则椭圆E的焦距的取值范围是(  )
A.[2,+∞)B.[4,+∞)C.[2$\sqrt{3}$,+∞)D.[4$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在一次水稻试验田验收活动中,将甲、乙两种水稻随机抽取各6株样品,单株籽粒数制成如图所示的茎叶图:
(1)一粒水稻约为0.1克,每亩水稻约为6万株,估计甲种水稻亩产约为多少公斤?
(2)分别从甲、乙两种水稻样品中任取一株,甲品种中选出的籽粒数记为a,乙品种中选出的籽粒数记为b,求a∈[180,189]且b∈[180,189]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线x2=2py和$\frac{{x}^{2}}{2}$-y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0,$\frac{P}{2}$),若$\sqrt{2}$|PQ|=$\sqrt{3}$|PF|,则抛物线的方程是(  )
A.x2=4yB.x2=2$\sqrt{3}$yC.x2=6yD.x2=2$\sqrt{2}$y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ2(3+sin2θ)=12,曲线C2的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t为参数),$α∈({0,\frac{π}{2}})$.
(1)求曲线C1的直角坐标方程,并判断该曲线是什么曲线;
(2)设曲线C2与曲线C1的交点为A,B,当$|{PA}|+|{PB}|=\frac{7}{2}$时,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆C:x2+y2+2x-8y+m=0与抛物线上E:y2=8x的准线l相切,抛物线E上的点P到准线l的距离为d,Q为圆C上任意一点,则|PQ|+d的最小值等于(  )
A.3B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点分别为F1,F2,短轴的一个端点为点P,△PF1F2内切圆的半径为$\frac{b}{3}$.设过点F2的直线l被椭圆C截得的线段为RS,当l⊥x轴时,|RS|=3
(1)求椭圆C的标准方程;
(2)在x轴上是否存在一点T,使得当l变化时,总有TS与TR所在直线关于x轴对称?若存在,请求出点T的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|0<x<2},集合B={x|-1<x<1},则A∪B等于(  )
A.{x|0<x<1}B.{x|-1<x<2}C.{x|0<x<2}D.{x|-1<x<1}

查看答案和解析>>

同步练习册答案