精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+a•x2+bx+c的图象上的一点M(1,m)处的切线的方程为y=2,其中a,b,c∈R.
(1)若a=-3,求f(x)的解析式,并表示成f(x)=(x+t)3+k,(t,k为常数);
(2)问函数y=f(x)是否有单调减区间,若存在,求单调减区间(用a表示),若不存在,请说明理由.
分析:(1)先求出函数在x=1处的导数,得到切线的斜率,建立一等式,再根据切点在函数图象上,建立另一等式,解方程组即可求出所求;
(2)先求导函数,然后f′(x)=0,讨论两根的大小,将a分为三种情形,再分别求出对应的单调减区间.
解答:(本小题满分12分)
解:(1)f′(x)=3x2+2a•x+b⇒f′(1)=3+2a+b=0
由∵m=2⇒f(1)=1+a+b+c=2∵a=-3⇒b=3,c=1,f(x)=x3-3x2+3x+1=(x-1)3+2…(4分)
(2)f′(x)=3x2+2a•x+b由(1)知b=-2a-3
所以 f′(x) =3x2+2a•x-(2a+3)=3(x+
2a+3
3
)•(x-1)
…(6分)
f′(x) =0⇒x=-
2a+3
3
,x=1
…(8分)
-
2a+3
3
=1?a=-3
即f′(x)=3(x-1)2≥0
∵f(x)为R上为增函数,所以函数没有单调减区间;          …(9分)
-
2a+3
3
>1?a<-3
时,可以判定f(x)单调减区间为(1,-
2a+3
3
)
…(10分)
-
2+3a
3
<1?a>-3
时,可以判定f(x)单调减区间为(-
2a+3
3
,1)
…(11分)
综上:a=-3,函数没有单调减区间;a<-3,f(x)单调减区间为(1,-
2a+3
3
)

a>-3,f(x)单调减区间为(-
2a+3
3
,1)
.…(12分)
点评:本题主要考查了导数的几何意义、利用导数研究函数的单调性,同时考查了分类讨论的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案