精英家教网 > 高中数学 > 题目详情
4.设数列{an}满足a1=0且$\frac{1}{1-{a}_{n+1}}$-$\frac{1}{1-{a}_{n}}$=1
(Ⅰ)求{an}的通项公式;
(Ⅱ)设cn=n•($\frac{1}{2}$)nan,求数列{cn}的前n项和Tn
(Ⅲ)设bn=$\frac{1-\sqrt{{a}_{n+1}}}{\sqrt{n}}$,记sn为数列{bn}的前n项和.证明sn<1.

分析 (Ⅰ)通过a1=0、$\frac{1}{1-{a}_{1}}$=$\frac{1}{1-0}$=1可知数列{$\frac{1}{1-{a}_{n}}$}是首项、公差均为1的等差数列,计算即得结论;
(Ⅱ)通过(I)可知cn=(n-1)•$\frac{1}{{2}^{n}}$,利用错位相减法计算即得结论;
(Ⅲ)通过(I)裂项可知bn=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,进而并项相加即得结论.

解答 (Ⅰ)解:∵a1=0,
∴$\frac{1}{1-{a}_{1}}$=$\frac{1}{1-0}$=1,
又∵$\frac{1}{1-{a}_{n+1}}$-$\frac{1}{1-{a}_{n}}$=1
∴数列{$\frac{1}{1-{a}_{n}}$}是首项、公差均为1的等差数列,
∴$\frac{1}{1-{a}_{n}}$=n,
∴an=$\frac{n-1}{n}$;
(Ⅱ)由(I)可知cn=n•($\frac{1}{2}$)nan=(n-1)•$\frac{1}{{2}^{n}}$,
∴Tn=1•$\frac{1}{{2}^{2}}$+2•$\frac{1}{{2}^{3}}$+…+(n-1)•$\frac{1}{{2}^{n}}$,
$\frac{1}{2}$Tn=1•$\frac{1}{{2}^{3}}$+2•$\frac{1}{{2}^{4}}$+…+(n-2)•$\frac{1}{{2}^{n}}$+(n-1)•$\frac{1}{{2}^{n+1}}$,
两式错位相减得:$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{n}}$-(n-1)•$\frac{1}{{2}^{n+1}}$,
∴Tn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{n-1}}$-(n-1)•$\frac{1}{{2}^{n}}$
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(n-1)•$\frac{1}{{2}^{n}}$
=1-(n+1)•$\frac{1}{{2}^{n}}$;
(Ⅲ)证明:由(I)可知bn=$\frac{1-\sqrt{{a}_{n+1}}}{\sqrt{n}}$=$\frac{1-\sqrt{\frac{n}{n+1}}}{\sqrt{n}}$=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,
∴Sn=1-$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{2}}$-$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$=1-$\frac{1}{\sqrt{n+1}}$<1.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设点O为△ABC外心,H为其垂心,延长BO交外接圆于点D,则$\overrightarrow{DC}$与$\overrightarrow{AH}$(  )
A.相等B.仅是模相等C.不相等D.共线但不相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)是实数集R上的函数,且对任意x∈R,f(x+1)=f(x+2)+f(x)恒成立.
(1)求证:f(x)是周期函数;
(2)已知f(3)+2=0,求f(2010)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义若数列{an}对任意的正整数n,都有|an-1|+|an|=d(d为常数)则称{an}为“绝对和数列”,d叫做“绝对公和”,已知“绝对和数列”{an}中,a1=2,绝对公和为3,则其前2009项的和s2009的最小值为(  )
A.-2009B.-3010C.-3014D.3028

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列关于函数f(x)=(x2-2x)ex的判断正确的是(  )
①f(x)<0的解集是{x|0<x<2} ②f(-$\sqrt{2}$)是极小值,f($\sqrt{2}$)是极大值
③f(x)没有最大值      ④f(x)有最大值.
A.②④B.①③C.①④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.化简:$\frac{\sqrt{1-2sin10°cos10°}}{cos(-10°)-\sqrt{1-co{s}^{2}170°}}$=(  )
A.0B.-1C.1D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,“A>30°”是“sinA>$\frac{1}{2}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在曲线y=x2(x≥0)上某一点A处做一切线使之与曲线以及x轴所围成的面积为$\frac{1}{12}$,则切点A的坐标为(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}满足a1+2a2+22a3+…+2n-1an=$\frac{n}{2},n∈{N^*}$
(Ⅰ)求an
(Ⅱ)设bn=$\frac{1}{{1+{a_n}}}+\frac{1}{{1-{a_{n+1}}}}$,数列{bn}的前n项和为Tn.求证:Tn>2n-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案