精英家教网 > 高中数学 > 题目详情
4.函数f(x)=x(3-3x)(0<x<1)取得最大值时x的值为(  )
A.$\frac{1}{3}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 利用二次函数的图象及性质求解即可.

解答 解:函数f(x)=x(3-3x)(0<x<1)
化简得:f(x)=x(3-3x)=-3x2+3x
开口向下,对称轴为x=$\frac{1}{2}$,
可知:x在(0,$\frac{1}{2}$)上单调递增,($\frac{1}{2}$,1)上单调递减,
∴当x=$\frac{1}{2}$时,f(x)取值最大值.
故选C.

点评 本题考查了二次函数的图象及性质的运用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,三个内角分别为A,B,C,已知sin(A+$\frac{π}{6}$)=2cosA.
(1)求角A的值;
(2)若B∈(0,$\frac{π}{3}$),且cos(A-B)=$\frac{4}{5}$,求sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.U=R,设A={x|x≥1或x≤-3},B={x|-4<x<0},求:
(1)A∩B,A∪B;
(2)∁UA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x+1)是偶函数,且满足f(x+1)=$\frac{1}{f(x)}$,当2≥x2>x1≥1时,[f(x2)-f(x1)](x2-x1)>0恒成立,设a=f(-2016),b=f(2015),c=f(π),则a,b,c的大小关系为a>c>b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,O为中线AM上的一个动点,若AM=2,则$\overrightarrow{OA}$•($\overrightarrow{OB}$+$\overrightarrow{OC}$)的最小值是(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)的图象过点(0,4),对任意x满足f(2-x)=f(x),且有最小值为1.
(1)求f(x)的解析式;
(2)若f(x)在区间[3a,a+1]上不单调,求实数a的取值范围;
(3)在区间[-1,3]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)求下列函数的导数:
①f(x)=(1-x)(1+x)(1+x2)(1+x4);
②f(x)=$\frac{2^x}{ln2}$.
(2)设$f(x)=\frac{2sinx}{{1+{x^2}}}$,如果$f'(x)=\frac{2}{{{{(1+{x^2})}^2}}}•g(x)$,试求g(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)解不等式|x-1|+|x-4|≥5.
(2)求函数y=|x-1|+|x-4|+x2-4x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题是假命题的是(  )
A.?φ∈R,函数f(x)=sin(2x+φ)都不是偶函数
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.向量$\overrightarrow a=(2,-1)$,$\overrightarrow b=(-3,0)$,则$\overrightarrow a$在$\overrightarrow b$方向上的投影为-2
D.“|x|≤1”是“x<1”的既不充分又不必要条件

查看答案和解析>>

同步练习册答案