分析 由题意和基本不等式可得ab的最小值,而△ABO面积S=$\frac{1}{2}$ab,可得答案.
解答 解:由题意可得a和b为正数且$\frac{2}{a}$+$\frac{1}{b}$=1,
∴1=$\frac{2}{a}$+$\frac{1}{b}$≥2$\sqrt{\frac{2}{a}•\frac{1}{b}}$=$\frac{2\sqrt{2}}{\sqrt{ab}}$,
∴$\sqrt{ab}$≥2$\sqrt{2}$,∴ab≥8,
∴△ABO面积S=$\frac{1}{2}$ab≥4
当且仅当$\frac{2}{a}$=$\frac{1}{b}$即a=4且b=2时取等号,
∴△ABO面积的最小值为:4
故答案为:4
点评 本题考查基本不等式求最值,涉及直线的截距,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,5) | B. | (-∞,3$\sqrt{3}$) | C. | (-∞,5] | D. | (-∞,3$\sqrt{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | $1+\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 篮球 | 排球 | 总计 | |
| 男同学 | 16 | 6 | 22 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 24 | 18 | 42 |
| P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k2 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com