分析 (1)由三角函数定义,得x1=cosα=$\frac{2\sqrt{7}}{7}$,由此利用同角三角函数的基本关系求得sinα的值,再根据x2=cos(α+$\frac{π}{3}$),利用两角和的余弦公式求得结果.
(2)依题意得 y1=sinα,y2=sin(α+$\frac{π}{3}$),分别求得S1 和S2 的解析式,再由S1-S2=f(α),求函数f(α)的值域.
解答 解:(1)由三角函数定义,得x1=cosα,x2=cos(α+$\frac{π}{3}$).
因为α∈($\frac{π}{6}$,$\frac{π}{3}$),cosα=$\frac{2\sqrt{7}}{7}$,所以sinα=$\frac{3\sqrt{7}}{7}$
所以x2=cos(α+$\frac{π}{3}$)=$\frac{1}{2}$cosα-$\frac{\sqrt{3}}{2}$sinα=$\frac{2\sqrt{3}-3\sqrt{21}}{14}$.
(2)依题意得y1=sinα,y2=sin(α+$\frac{π}{3}$).
所以S1=$\frac{1}{2}$cosαsinα=$\frac{1}{4}$sin2α,S2=$\frac{1}{2}$[-cos(α+$\frac{π}{3}$)]sin(α+$\frac{π}{3}$)=-$\frac{1}{4}$sin(2α+$\frac{2π}{3}$).
依题意f(α)=S1-S2=$\frac{1}{4}$sin2α+$\frac{1}{4}$sin(2α+$\frac{2π}{3}$)=$\frac{1}{4}$sin(2α+$\frac{π}{3}$).
因为α∈($\frac{π}{6}$,$\frac{π}{3}$),
所以2α+$\frac{π}{3}$∈($\frac{2π}{3}$,π),
所以sin(2α+$\frac{π}{3}$)∈(0,$\frac{\sqrt{3}}{2}$),
所以$\frac{1}{4}$sin(2α+$\frac{π}{3}$)∈(0,$\frac{\sqrt{3}}{8}$),
所以函数f(α)的值域是(0,$\frac{\sqrt{3}}{8}$).
点评 本题主要考查任意角的三角函数的定义,两角和差的正弦公式、余弦公式,同角三角函数的基本关系的应用,属于中档题.
科目:高中数学 来源:2017届江西省红色七校高三上学期联考一数学(文)试卷(解析版) 题型:选择题
“序数”指每个数字比其左边的数字大的自然数(如1258),在两位的“序数”中任取一个数比56大的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-$\frac{1}{4}$ | B. | y=$\frac{1}{4}$ | C. | x=-$\frac{1}{4}$ | D. | x=$\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com