精英家教网 > 高中数学 > 题目详情
14.已知$α∈(\frac{π}{2},π)$,且tanα=-3.
(1)求$sin(\frac{π}{4}+α)$的值;
(2)求$cos(\frac{2π}{3}-2α)$的值.

分析 (1)由已知利用同角三角函数基本关系式即可计算得解.
(2)利用二倍角公式可求sin2α,cos2α的值,进而利用两角差的余弦函数公式即可计算得解.

解答 解:(1)因为$α∈(\frac{π}{2},π)$,tanα=-3,
可得$sinα=\frac{{3\sqrt{10}}}{10}$,$cosα=-\frac{{\sqrt{10}}}{10}$,
可得:$sin(\frac{π}{4}+α)=\frac{{\sqrt{2}}}{2}(sinα+cosα)=\frac{{\sqrt{2}}}{2}×(\frac{{3\sqrt{10}}}{10}-\frac{{\sqrt{10}}}{10})=\frac{{\sqrt{5}}}{5}$.
(2)sin2α=2sinαcosα=-$\frac{3}{5}$,cos2α=cos2α-sin2α=-$\frac{4}{5}$,
可得:$cos(\frac{2π}{3}-2α)$=cos$\frac{2π}{3}$cos2α+sin$\frac{2π}{3}$sin2α=$\frac{4-3\sqrt{3}}{10}$.

点评 本题主要考查了同角三角函数基本关系式,二倍角公式,两角差的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若f(x)=-x2+2(a-1)x+2在(-∞,4]上单调递增,则实数a的取值范围是(  )
A.a≥-3B.a≤-3C.a≤5D.a≥5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.等差数列{an}中,已知a2=3,a7=13.
(1)求数列{an}的通项公式;
(2)求数列前8项和S8的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若集合A={x|x2-2x>0,x∈R},B={x||x+1|<2,x∈R},则A∩B=(-3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|2x+1|+|x-2|
(1)求不等式f(x)≤5的解集;
(2)若关于x的不等式f(x)<|a-$\frac{1}{2}$|的解集不是空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列关于直观图的叙述正确的是(  )
A.正三角形的直观图是正三角形B.平行四边形的直观图是平行四边形
C.矩形的直观图是矩形D.圆的直观图是圆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设角α的终边经过点(-6t,-8t) (t≠0),则sin α-cos α的值是(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.±$\frac{1}{5}$D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知关于x的一元二次不等式ax2+bx+c>0的解集为{x|-2<x<3},则不等式cx2-bx+a<0的解集是(  )
A.{x|x$<-\frac{1}{2}$或x$>\frac{1}{3}$}B.{x|x$\frac{1}{3}$或x>$\frac{1}{2}$}C.{x|-$\frac{1}{2}$<x<$\frac{1}{3}$}D.{x|-$\frac{1}{3}$<x<$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在平面直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x 轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连结AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案