精英家教网 > 高中数学 > 题目详情
3.计算:sin50°(1+$\sqrt{3}$tan10°).

分析 首先,将正切化简为弦,然后,结合辅助角公式和诱导公式进行化简即可.

解答 解:sin50°(1+$\sqrt{3}$tan10°)
=sin50°(1+$\sqrt{3}$$\frac{sin1{0}^{°}}{cos10°}$)
=$\frac{2sin50°(\frac{1}{2}cos10°+\frac{\sqrt{3}}{2}sin10°)}{cos10°}$
=$\frac{2sin50°sin40°}{cos10°}$
=$\frac{sin100°}{cos10°}$
=$\frac{cos10°}{cos10°}$
=1.

点评 本题主要考查了三角函数中的恒等变换应用,两角和公式,同角三角函数基本关系的应用,属基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.函数f(x)=cos2x+$\frac{\sqrt{3}}{2}$sin2x,
(1)求f(x)的最小正周期;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列四个命题:
①命题“若x<-1,则x2-2x-3>0”的否命题为“若x<-1,则x2-2x-3≤0”;
②命题p:?x∈R,sinx≤1.则¬p:?x0∈R,使sinx0>1;
③“φ=$\frac{π}{2}$+kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件;
④命题p:“?x0∈R,使sinx0+cosx0=$\frac{3}{2}$”;命题q:“设$\overrightarrow{a}$,$\overrightarrow{b}$是任意两个向量,则“$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|”是“$\overrightarrow{a}$∥$\overrightarrow{b}$”的充分不必要条件”,那么(¬p)∧q为真命题.
其中正确的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x),(x∈[a2-3,2a])是奇函数,则实数a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-2,0),f(x)=2x+$\frac{1}{2}$,则f(2013)=(  )
A.-1B.0C.1D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知(x-2)2-4(x-y)(y-2)=0,试求x+2与y的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在数列{an}中,a1=2,且对任意的自然数n∈N*,都有a1+a2+a3+…+an=nan+n(n-1)成立,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)为偶函数,g(x)为奇函数,求满足下列条件的f(x)、g(x)的解析式:
(1)f(x)+g(x)=x2+x-2;
(2)f(x)+g(x)=$\frac{1}{x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知定义在R上奇函数g(x)满足g(x+2)=-g(x),且当0≤x≤1时,g(x)=log2(x+a),求a的值以及g(x)在[-2,-1]上的解析式.

查看答案和解析>>

同步练习册答案