精英家教网 > 高中数学 > 题目详情
如图,三棱锥P-ABC中,PA⊥平面ABC,△ABC是等边三角形,E是BC中点,若PA=AB,则异面直线PE与AB所成角的余弦值(  )
分析:平移法:取AC中点F,连接EF、PF,可证∠PEF即为异面直线PE与AB所成角或其补角.设等边三角形△ABC的边长为2,在△PEF中,由余弦定理即可求出cos∠PEF.
解答:解:取AC中点F,连接EF、PF,
∵E为BC中点,∴EF∥AB,则∠PEF即为异面直线PE与AB所成角或其补角.
∵PA⊥平面ABC,∴PA⊥AB,PA⊥AC,
设等边三角形△ABC的边长为2,∵PA=AB,∴PA=2,
在Rt△PAF中,PA=2,AF=1,所以PF=
5

又E、F分别为BC、AC中点,所以EF=1,
在等腰Rt△PAC中,PC=2
2
,同理PB=2
2

∴PC=PB,PE⊥BC,在Rt△PEB中,PE=
(2
2
)2-12
=
7

在△PEF中,cos∠PEF=
PE2+FE2-PF2
2•PE•FE
=
7+1-5
7
×1
=
3
7
14

故选A.
点评:本题考查异面直线所成角的求法,通过平移把异面角转化为平面角处理是常用方法,体现了转化思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱锥P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB
(Ⅰ)求证:AB⊥平面PCB;
(Ⅱ)求二面角C-PA-B的大小的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)如图,三棱锥P-ABC中,
PA
AB
=
PA
AC
=
AB
AC
=0
PA
2
=
AC
2
=4
AB
2

(Ⅰ)求证:AB⊥平面PAC;
(Ⅱ)若M为线段PC上的点,设
|
PM|
|PC
|
,问λ为何值时能使直线PC⊥平面MAB;
(Ⅲ)求二面角C-PB-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)如图,三棱锥P-ABC中,侧面PAC⊥底面ABC,∠APC=90°,且AB=4,AP=PC=2,BC=2
2

(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)若E为侧棱PB的中点,求直线AE与底面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳二模)如图,三棱锥P-ABC中,PA丄面ABC,∠ABC=90°,PA=AB=1,BC=2,则P-ABC的外接球的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在三棱锥P-ABC中,AB⊥PC,AC=2,BC=4,AB=2
3
,∠PCA=30°.
(1)求证:AB⊥平面PAC. (2)设二面角A-PC-B•的大小为θ•,求tanθ•的值.

查看答案和解析>>

同步练习册答案