已知函数f(x)=ex,直线l的方程为y=kx+b.
(1)求过函数图象上的任一点P(t,f(t))的切线方程;
(2)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(3)若f(x)≥kx+b对任意x∈[0,+∞)成立,求实数k、b应满足的条件.
分析:(1)对函数求导,得到函数的导函数,即得到了函数在某一点的切线的斜率,用点斜式写出切线的方程.
(2)根据切线的方程,写出斜率和截距,构造新函数,对新函数求导,得到在x∈(-∞,t)上单调递减,在x∈(t,+∞)为单调递增,即得到函数的最小值,根据函数思想得到不等式成立.
(3)构造新函数,对新函数求导,判断函数的单调性,针对于k的不同值,函数的单调性不同,需要进行讨论,求出函数的最小值,得到要写的条件.
解答:解:(1)函数f(x)=e
x,
分析可得f(x)=e
x与直线相切,只有一个交点即切点,
故过函数图象上的任一点P(t,f(t))的切线中P即为切点,
∵f'(x)=e
x,
∴切线l的方程为y-e
t=e
t(x-t)
即y=e
tx+e
t(1-t)
(2)由(1)
记函数F(x)=f(x)-kx-b,
∴F(x)=e
x-e
tx-e
t(1-t)
∴F'(x)=e
x-e
t∴F(x)在x∈(-∞,t)上单调递减,在x∈(t,+∞)为单调递增
故F(x)
min=F(t)=e
t-e
tt-e
t(1-t)=0
故F(x)=f(x)-kx-b≥0即f(x)≥kx+b对任意x∈R成立
(3)设H(x)=f(x)-kx-b=e
x-kx-b,x∈[0,+∞)
∴H'(x)=e
x-k,x∈[0,+∞)
①当k≤1时,H'(x)≥0,则H(x)在x∈[0,+∞)上单调递增
∴H(x)
min=H(0)=1-b≥0,
∴b≤1,即
符合题意
②当k>1时,H(x)在x∈[0,lnk)上单调递减,x∈[lnk,+∞)上单调递增
∴H(x)
min=H(lnk)=k-klnk-b≥0
∴b≤k(1-lnk)
综上所述满足题意的条件是
或
点评:本题考查函数导函数的应用,主要是求最值问题,本题解题的关键是对于不等式成立,只要用函数的最值来整理就使得问题解题的方向非常明确.