精英家教网 > 高中数学 > 题目详情

如图,四棱锥的底面是正方形,棱底面,,的中点.

(1)证明平面
(2)证明平面平面.

(1)详见解析;(2)详见解析.

解析试题分析:(1)由推出平面;(2)由推出底面,进而推出平面平面.
试题解析:(1)连结,设交于点,连结.
∵底面ABCD是正方形,∴的中点,又的中点,
, ∵平面,平面,
平面.
(2)∵,的中点, ∴.
底面,∴.又由于,,故底面,
所以有.又由题意得,故.
于是,由,,可得底面.
故可得平面平面.
考点:线面平行,面面垂直的判定和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上动点,F是AB中点,AC = 1,BC = 2,AA1 = 4.

(Ⅰ)当E是棱CC1中点时,求证:CF∥平面AEB1
(Ⅱ)在棱CC1上是否存在点E,使得二面角A—EB1—B的余弦值是,若存在,求CE的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为正方形,底面分别是的中点.

(1)求证:平面
(2)求证:平面平面
(3)若,求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直角梯形边上的中点(如图甲),,将沿折到的位置,使,点上,且(如图乙)

(Ⅰ)求证:平面ABCD.
(Ⅱ)求二面角E?AC?D的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱的底面是平行四边形,且,,,的中点,平面.

(Ⅰ)证明:平面平面
(Ⅱ)若,试求异面直线所成角的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,底面是正方形,侧面是正三角形,平面底面

(I) 证明:平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,底面的中点,已知

求:(Ⅰ)三角形的面积;(II)三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为菱形,的中点。

(1)若,求证:平面
(2)点在线段上,,试确定的值,使

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知矩形中,的中点,沿将三角形折起,使.
(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案