精英家教网 > 高中数学 > 题目详情

在四棱锥中,底面是正方形,侧面是正三角形,平面底面

(I) 证明:平面
(II)求二面角的余弦值.

(I)见解析;(II)

解析试题分析:(I)因为平面VAD⊥平面ABCD,平面VAD∩平面ABCD=AD,又AB在平面ABCD内,AD⊥AB,
所以AB⊥平面VAD;(II)法一:先做出所求二面角的平面角,再由余弦定理求平面角的余弦值,既得所求;法二:设AD的中点为O,连结VO,则VO⊥底面ABCD,又设正方形边长为1,建立空间直角坐标系,写出各个点的空间坐标,分别求平面VAD的法向量和平面VDB的法向量,可得结论.
试题解析:(Ⅰ)因为平面VAD⊥平面ABCD,平面VAD∩平面ABCD=AD,又AB在平面ABCD内,AD⊥AB,
所以AB⊥平面VAD.    3分
(Ⅱ)由(Ⅰ)知AD⊥AB,AB⊥AV.依题意设AB=AD=AV=1,所以BV=BD=. 6分

设VD的中点为E,连结AE、BE,则AE⊥VD,BE⊥VD,
所以∠AEB是面VDA与面VDB所成二面角的平面角.      9分
又AE=,BE=,所以cos∠AEB==
12分
(方法二)
(Ⅰ)同方法一.    3分
(Ⅱ)设AD的中点为O,连结VO,则VO⊥底面ABCD.
又设正方形边长为1,建立空间直角坐标系如图所示.    4分

则,A(,0,0),    B(,1,0),
D( ,0,0),   V(0,0,);
    7分
由(Ⅰ)知是平面VAD的法向量.设是平面VDB的法向量,则
    10分

考点:1、面面垂直的性质;2、二面角的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=

(I)若M为PA中点,求证:AC∥平面MDE;
(II)求直线PA与平面PBC所成角的正弦值;
(III)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE, =45 ,O是BC的中点,AO= ,且BC=6,AD=AE=2CD=2 ,

(1)证明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,侧面是等边三角形,在底面等腰梯形中,的中点,的中点,.

(1)求证:平面平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,棱底面,,的中点.

(1)证明平面
(2)证明平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.

(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形均为全等的直角梯形,且.

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,是边长为2的正三角形. 若平面,平面平面, ,且

(1)求证://平面;
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是正方形,

(Ⅰ)求证:平面平面
(Ⅱ)若所成的角为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案