精英家教网 > 高中数学 > 题目详情

设数列{an}满足a1=a, an+1=can+1-c, N*,其中a,c为实数,且c 0.

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)设N*,求数列{bn}的前n项和Sn;

(Ⅲ)若0<an<1对任意N*成立,证明0<c1.

解:(Ⅰ)方法一:

∴当时,是首项为,公比为的等比数列。

时,仍满足上式,

∴数列的通项公式为

方法二:

时,

时,也满足上式

所以数列的通项公式为

(Ⅱ)由(Ⅰ)得

(Ⅲ)证明:由(Ⅰ)知

,∴

对任意成立,知

下证,用反证法。

方法一:假设,由函数的函数图像知,当趋于无穷大时,趋于无穷大。

不能对恒成立,导致矛盾。

,∴

方法二:

假设,∵,∴

恒成立(*)

为常数,∴(*)对不能恒成立,导致矛盾,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}满足a1=1,且对任意的n∈N*,点Pn(n,an)都有
.
PnPn+1
=(1,2)
,则数列{an}的通项公式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照一模)若数列{bn}:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如:若cn=
4n-1,当n为奇数时
4n+9,当n为偶数时.
则{cn}
是公差为8的准等差数列.
(I)设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.求证:{an}为准等差数列,并求其通项公式:
(Ⅱ)设(I)中的数列{an}的前n项和为Sn,试研究:是否存在实数a,使得数列Sn有连续的两项都等于50.若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照一模)若数列{bn}:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如数列cn:若cn=
4n-1,当n为奇数时
4n+9,当n为偶数时
,则数列{cn}是公差为8的准等差数列.设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.
(Ⅰ)求证:{an}为准等差数列;
(Ⅱ)求证:{an}的通项公式及前20项和S20

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
π
2
)=0
cn=an+
1
2an
,则数列{cn}的前n项和Sn为(  )
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=2,an+1=1-
1
an
,令An=a1a2an,则A2013
=(  )

查看答案和解析>>

同步练习册答案