精英家教网 > 高中数学 > 题目详情
棱长为1的正方体ABCD-A1B1C1D1及其内部一动点P,集合Q={P||PA|≤1},则集合Q构成的几何图形为(  )
A、圆B、四分之一圆
C、球D、八分之一球
考点:棱柱的结构特征
专题:空间位置关系与距离
分析:根据题意,画出图形,结合图形,得出集合Q表示的几何图形是什么.
解答: 解:根据题意,画出图形,如图所示;
当集合Q={P||PA|≤1}时,
集合Q构成的几何图形为半径等于1的八分之一球体.
故选:D.
点评:本题考查了空间几何体的应用问题,解题时应画出图形,结合图形解答问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:
(1)81
1
2
+(-7)0-(
1
3
)-2

(2)log464+lg25+lg4+9log92

查看答案和解析>>

科目:高中数学 来源: 题型:

已知装曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的渐近线过点(1,
3
)
,F1,F2为双曲线的左右焦点,P为双曲线上的任意一点,且∠F1PF2=
π
3
S△PF1F2=12
3

(1)求双曲线的两条渐近线的夹角;
(2)求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱锥P-ABC,底面ABC为边长为2
3
的正三角形,平面PBC⊥平面ABC,PB=PC=2,D为AP上一点,AD=2DP,O为底面三角形中心.
(1)求证:DO∥面PBC;
(2)求证:AC⊥面BOD;
(3)设M为PC中点,求二面角M-BD-O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定圆A:(x+1)2+y2=8的圆心为A,动圆M过点B(1,0),且于圆A相切,动圆的圆心M的轨迹的方程为C,
(1)求曲线C的轨迹方程;
(2)直线l过点(0,t)且与曲线C交于P,Q两点,探究:是否存在实数t,使得点N(0,-1)在以PQ为直径的圆上,若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1
x2
a2
-y2=1
(a>0)与直线l:x+y=1相交于A,B两点.
(1)求a的取值范围;
(2)求双曲线离心率e的取值范围;
(3)求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项之和是Sn,且4Sn=(an+1)2,则下列说法正确的是(  )
A、数列{an}为等差数列
B、数列{an}为等比数列
C、数列{an}为等差或等比数列
D、数列{an}可能既不是等差数列也不是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC与A1、B1、C1不在同一平面内,如果三条直线AA1,BB1,CC1,两两相交,求证:AA1,BB1,CC1交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x|x-a|,其中a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若不等式4≤f(x)≤16在x∈[1,2]上恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案