精英家教网 > 高中数学 > 题目详情

【题目】已知是椭圆上一点, 为椭圆的两焦点,且,则面积为( )

A. B. C. D.

【答案】A

【解析】

由椭圆的标准方程可得:c=4,设|PF1|=t1,|PF2|=t2,根据椭圆的定义可得:t1+t2=10,再根据余弦定理可得:t12+t22t1t2=64,再联立两个方程求出t1t2=12,进而结合三角形的面积公式求出三角形的面积.

由椭圆的标准方程可得:a=5,b=3,

c=4,

设|PF1|=t1,|PF2|=t2

所以根据椭圆的定义可得:t1+t2=10①,

在△F1PF2中,∠F1PF2=60°,

所以根据余弦定理可得:|PF1|2+|PF2|2﹣2|PF1||PF2|cos60°=|F1F2|2=(2c2=64,

整理可得:t12+t22t1t2=64,②

把①两边平方得t12+t22+2t1t2=100,③

所以③﹣②得t1t2=12,

F1PF2=3

故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义域为的函数满足:,且对于任意实数恒有,当时,.

(1)求的值,并证明当时,

(2)判断函数上的单调性并加以证明;

(3)若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求适合下列条件的双曲线的标准方程:

(1)过点(3,-),离心率e=

(2)中心在原点,焦点F1,F2在坐标轴上,实轴长和虚轴长相等,且过点P(4,-).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,,顶点在底面上的射影恰为点,且

1)证明:平面平面

2)求棱所成的角的大小;

3)若点的中点,并求出二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

()若m=1求证 在(0+∞)上单调递增

()若,试讨论g(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,记点P到点A(-1,1)的距离与点P到直线x= - 1的距离之和的最小值为M,若B(3,2),记|PB|+|PF|的最小值为N,则M+N= ______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,PA平面ABCD,EB//PA,AB=PA=4,EB=2,F为PD的中点.

(1)求证AFPC

(2)BD//平面PEC

(3)求二面角D-PC-E的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某省从121日至224日的新冠肺炎每日新增确诊病例变化曲线图.

若该省从121日至224日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列的前n项和为,则下列说法中正确的是(

A.数列是递增数列B.数列是递增数列

C.数列的最大项是D.数列的最大项是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,底面为边长为2的菱形,平面分别是的中点.

(1)判定是否垂直,并说明理由;

(2)若,求二面角的余弦值.

查看答案和解析>>

同步练习册答案