精英家教网 > 高中数学 > 题目详情
6.已知点A(2,0),抛物线y=x2-4上另外存在两点B,C,使得AB⊥BC,则点C的横坐标x2的取值范围是(  )
A.(-∞,0]∪[4,+∞)B.(-∞,-1]∪[2,+∞)C.[-1,2]D.(-∞,0]∪[1,+∞)

分析 设 B(x1,x12-4),C(x2,x22-4)根据AB⊥BC,表示出两直线的斜率相乘得-1,进而可得关于x2的一元二次方程,根据判别式大于等于0求得x2范围.

解答 解:由于B、C在抛物线上,故可设 B(x1.x12-4),C(x2.x22-4)
∵AB⊥BC,
∴x1≠2,x2≠2,x1≠x2
∴$\frac{{x}_{1}^{2}-4}{{x}_{1}-2}•\frac{{(x}_{1}^{2}-4)-({x}_{2}^{2}-4)}{{x}_{1}-{x}_{2}}$=-1,
即(x1+2)(x1+x2)=-1.
即x12+(x2+2)x1+(2x2+1)=0
∵x1∈R,
∴△=(x2+2)2-4(2x2+1)≥0,
即x22-4x2≥0.
解得x2≤0,x2≥4
解得:x2≤0或x2≥4.
故选:A

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)是在(0,+∞)上处处可导的函数,若xf′(x)>f(x)在x>0上恒成立:
(1)判断函数g(x)=$\frac{f(x)}{x}$在(0,+∞)上的单调性;
(2)当x1>0,x2>0时,证明f(x1)+f(x2)<f(x1+x2);
(3)求证:$\frac{1}{2^2}$ln22+$\frac{1}{3^2}$ln32+$\frac{1}{4^2}$ln42+…+$\frac{1}{(n+1)^2}$ln(n+1)2>$\frac{n}{2(n+1)(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.变量x、y满足$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}\right.$
(1)设z=$\frac{y}{x-1}$,求z的取值范围;
(2)设z=x2+y2,求z的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知x,y的取值如下表所示:
x234
y546
如果y与x呈线性相关,且线性回归方程为:$\widehat{y}$=$\widehat{b}$x+$\frac{7}{2}$,则$\widehat{b}$=(  )
A.-$\frac{1}{10}$B.-$\frac{1}{2}$C.$\frac{1}{10}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知垂直竖在水平地面上相距20米的两根旗杆的高度分别为10米和15米,地面上的动点P到两旗杆顶点的仰角相等,则点P的轨迹是圆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.-2log510-log50.25+2=(  )
A.0B.-1C.-2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}的前n项和Sn=$\frac{n+1}{n+2}$,则a4=(  )
A.$\frac{1}{20}$B.$\frac{1}{30}$C.1D.$\frac{7}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解不等式ax2-(a-1)x-1≤0(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若双曲线的一条渐近线为x+2y=0,且双曲线与抛物线y=x2的准线仅有一个公共点,则此双曲线的标准方程为$\frac{{y}^{2}}{\frac{1}{16}}-\frac{{x}^{2}}{\frac{1}{4}}=1$.

查看答案和解析>>

同步练习册答案