精英家教网 > 高中数学 > 题目详情
函数y=
x2+2x+2
x+1
(x>-1)
的图象的最低点坐标是(  )
A.(0,2)B.不存在C.(1,2)D.(1,-2)
y=
x2+2x+2
x+1
=
(x+1)2+1
x+1
=(x+1)+
1
x+1
≥2(x>-1)
当且仅当x+1=1,即x=0时,y取最小值2
故函数y=
x2+2x+2
x+1
(x>-1)
的图象的最低点坐标是(0,2)
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=x2-2x+5(x∈[-1,2])的最大值是
8
8
,最小值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2-2x+1
的值域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2+2x,x∈[-2,3],则值域为
[-1,15]
[-1,15]

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A为函数y=
x-1
x2-3x+2
的定义域,集合B为函数y=
-x2+2x+4
的值域,则A∩B=
[0,1)∪(1,2)∪(2,
5
]
[0,1)∪(1,2)∪(2,
5
]

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2+2x+3(x≥0)的值域为(  )

查看答案和解析>>

同步练习册答案