精英家教网 > 高中数学 > 题目详情
13.集合A={(x,y)|y=lg(x+1)-1},B={(x,y)|x=m},若A∩B=∅,则实数m的取值范围是(  )
A.(-∞,1)B.(-∞,1]C.(-∞,-1)D.(-∞,-1]

分析 画出两函数图象,根据A与B的交集为空集,得到两函数没有交点,即可确定出m的范围.

解答 解:如图所示,画出y=lg(x+1)-1与x=m的图象,
∵A∩B=∅,
∴两函数图象没有交点,
则m的范围为(-∞,-1].
故选:D.

点评 此题考查了交集及其运算,利用了数形结合的思想,画出两函数图象是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知锐角α,β满足:cosα=$\frac{1}{3}$,cos(α+β)=-$\frac{1}{3}$,则cos(α-β)=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{3}$D.$\frac{23}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在Rt△ABC中,两直角边分别为a,b,设h为斜边上的高,则$\frac{1}{h^2}$=$\frac{1}{a^2}$+$\frac{1}{b^2}$,类比此性质,如图,在四面体P-ABC 中,若PA,PB,PC两两垂直,且长度分别为a,b,c,设棱锥底面ABC上的高为h,则得到的正确结论为$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{1}{2}$x-sinx,x∈(0,π),则f(x)的最小值为$\frac{π}{6}$-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.
(Ⅰ)求cosB的值.
(Ⅱ)若$b=\sqrt{3}$,且a=c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若不等式ax2+2ax+2<0的解集为空集,则实数a的取值范围为0≤a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,既是奇函数又在区间(0,+∞)单调递增的是(  )
A.y=2xB.y=2lgxC.y=2x3D.y=x+$\frac{2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=-2sin2x-2acosx-2a+1(x∈R),设其最小值为g(a)( x∈R).
(Ⅰ)求g(a);
(Ⅱ)若g(a)=$\frac{1}{2}$,求a及此时f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3-3ax2+2bx=的单调递减区间为(-$\frac{1}{3}$,1),
(1)求a,b的值;
(2)若不等式f(x)≥k2+7k在区间[-2,2]上恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案