精英家教网 > 高中数学 > 题目详情
20.$\sqrt{1+2sin(π-3)cos(π+3)}$化简的结果是(  )
A.sin3-cos3B.cos3-sin3C.±(sin3-cos3)D.以上都不对

分析 利用诱导公式、同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得所给式子的值.

解答 解:$\sqrt{1+2sin(π-3)cos(π+3)}$=$\sqrt{1-2sin3•cos3}$=|sin3-cos3|=sin3-cos3,
故选:A.

点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知在数轴上0和3之间任取一实数x,则使“x2-2x<0”的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{2}{3}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.学校在军训过程中要进行打靶训练,给每位同学发了五发子弹,打靶规则:每个同学打靶过程中,若 连续两发命中或者 连续两发不中则要停止射击,否则将子弹打完.假设张同学在向目标射击时,每发子弹的命中率为$\frac{2}{3}$.
(1)求张同学前两发只命中一发的概率;
(2)求张同学在打靶过程中所耗用的子弹数X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知不同的直线l,m,n与不同的平面α,β,则下列四个命题中错误的是(  )
A.若m∥l,n∥l,则m∥nB.若m⊥α,m∥β,则α⊥βC.若m⊥β,α⊥β,则m∥αD.若m∥α,n⊥α,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题正确的个数为(  )
①“?x∈R都有x2≥0”的否定是“?x0∈R使得x02≤0”
②“x≠3”是“|x|≠3”必要不充分条件
③命题“若m≤$\frac{1}{2}$,则方程mx2+2x+1=0有实数根”的逆否命题.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.相关关系是一种不确定的关系,回归分析是对相关关系的分析,因此没有实际意义
B.独立性检验对分类变量关系的研究没有100%的把握,所以独立性检验研究的结果在实际中也没有多大的实际意义
C.相关关系可以对变量的发展趋势进行预报,这种预报可能是错误的
D.独立性检验如果得出的结论有99%的可信度就意味着这个结论一定是正确的

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且经过点($\frac{3}{2}$,$\frac{1}{2}$).
(1)求椭圆C的方程;
(2)过点P(0,2)且斜率是-$\sqrt{2}$的直线交椭圆C于A,B两点,求△AOB(O为原点)的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C的对边分别是a,b,c,已知4cosB(acosC+ccosA)=3b.求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知m,n是两条不同直线,α,β是两个不同的平面,则下列结论正确的是(  )
A.若m∥n,n?α,则m∥αB.m∥α,n?a,则m∥n
C.若m∥β,n∥β,m?α,n?α,则α∥βD.α∥β,n?α,则n∥β

查看答案和解析>>

同步练习册答案