精英家教网 > 高中数学 > 题目详情
15.下列命题正确的个数为(  )
①“?x∈R都有x2≥0”的否定是“?x0∈R使得x02≤0”
②“x≠3”是“|x|≠3”必要不充分条件
③命题“若m≤$\frac{1}{2}$,则方程mx2+2x+1=0有实数根”的逆否命题.
A.0B.1C.2D.3

分析 由全称命题的否定为特称命题,以及量词和不等号的变化,即可判断①;
由充分必要条件的定义,即可判断②;
由由m=0,2x+1=0有实根;若m≠0,则△=4-4m≥4-2=2>0,即可判断原命题成立,再由命题的等价性,即可判断③.

解答 解:①由全称命题的否定为特称命题,可得
“?x∈R都有x2≥0”的否定是“?x0∈R使得x02<0”,故①错;
②“x≠3”比如x=-3,可得|x|=3;反之,|x|≠3,可得x≠3,
“x≠3”是“|x|≠3”必要不充分条件,故②对;
③命题“若m≤$\frac{1}{2}$,则方程mx2+2x+1=0有实数根”,由m=0,2x+1=0有实根;
若m≠0,则△=4-4m≥4-2=2>0,即方程mx2+2x+1=0有实数根,则原命题成立,
由等价性可得其逆否命题也为真命题,故③对.
故选:C.

点评 本题考查命题的真假判断,主要是命题的否定、充分必要条件的判断和四种命题的真假,考查运算能力和推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某工厂经过技术改造后,生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据,
x3456
y2.5344.5
据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得回归直线的斜率为0.7,那么这组数据的回归直线方程是$\widehat{y}$=0.7x+0.35.
(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}y}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.当实数m为何值时,复数z=(m2+m-2)+(m2-1)i是:
①实数;            ②虚数;           ③纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一名老师和四名学生站成一排照相,学生请老师站在正中间,则不同的站法为(  )
A.4种B.12种C.24种D.120种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=$\frac{1}{\sqrt{1-lo{g}_{3}({2}^{x}-1)}}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.$\sqrt{1+2sin(π-3)cos(π+3)}$化简的结果是(  )
A.sin3-cos3B.cos3-sin3C.±(sin3-cos3)D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知曲线C:y=sin(2x+φ)(|φ|<$\frac{π}{2}$)关于x=$\frac{π}{6}$对称,将曲线C向左平移θ(θ>0)个单位长度,得到的曲线E的一个对称中心为$(\frac{π}{3},0)$,则|ϕ-θ|的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知P为抛物线C:x2=2y上异于坐标原点的动点,直线l与抛物线C切于点P,交x轴于Q,交y轴于R,则$\frac{|PQ|}{|PR|}$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知平面区域D由以A(2,4)、B(5,2)、C(3,1)为顶点的三角形内部和边界组成,若在区域D上有无穷多个点(x,y)可使目标函数z=x+my取得最小值,则m=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案