精英家教网 > 高中数学 > 题目详情
7.已知曲线C:y=sin(2x+φ)(|φ|<$\frac{π}{2}$)关于x=$\frac{π}{6}$对称,将曲线C向左平移θ(θ>0)个单位长度,得到的曲线E的一个对称中心为$(\frac{π}{3},0)$,则|ϕ-θ|的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

分析 由题意求得φ的值,可得函数f(x)的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得θ的值,可得|ϕ-θ|的最小值.

解答 解:曲线C:y=sin(2x+φ)(|φ|<$\frac{π}{2}$)关于x=$\frac{π}{6}$对称,可得2•$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,∴φ=$\frac{π}{6}$,
曲线C:y=sin(2x+$\frac{π}{6}$).
将曲线C向左平移θ(θ>0)个单位长度,得到的曲线E:y=sin(2x+$\frac{π}{6}$+2θ)的一个对称中心为$(\frac{π}{3},0)$,
∴2•$\frac{π}{3}$+$\frac{π}{6}$+2θ=kπ,k∈Z,∴θ=$\frac{kπ}{2}$-$\frac{5π}{12}$,|φ-θ|=|$\frac{π}{6}$-($\frac{kπ}{2}$-$\frac{5π}{12}$)|=|$\frac{7π}{12}$-$\frac{kπ}{2}$|,故当k=1时,
则|ϕ-θ|的最小值为$\frac{π}{12}$,
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.
(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;
(2)若把乙公司设置的每次点击价格为x,每小时点击次数为y,则点(x,y)近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.(附:回归方程系数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在${(\sqrt{x}+\frac{3}{x})^6}$的展开式中,常数项为(  )
A.135B.105C.30D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题正确的个数为(  )
①“?x∈R都有x2≥0”的否定是“?x0∈R使得x02≤0”
②“x≠3”是“|x|≠3”必要不充分条件
③命题“若m≤$\frac{1}{2}$,则方程mx2+2x+1=0有实数根”的逆否命题.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“a>b>0”是“a+a2>b+b2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且经过点($\frac{3}{2}$,$\frac{1}{2}$).
(1)求椭圆C的方程;
(2)过点P(0,2)且斜率是-$\sqrt{2}$的直线交椭圆C于A,B两点,求△AOB(O为原点)的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果a>b,那么下列不等式中一定成立的是(  )
A.a+c>b+cB.$\sqrt{a}>\sqrt{b}$C.c-a>c-bD.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若${(1-x)^5}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}+{a_5}{x^5}$,则|a0|-|a1|+|a2|-|a3|+|a4|-|a5|=(  )
A.0B.1C.32D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3-3x2-9x+11
(1)写出函数f(x)的递减区间;
(2)求函数f(x)的极值;
(3)当x∈[-2,4]时,不等式f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

同步练习册答案