分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的递减区间即可;
(2)根据函数的单调性求出函数的极大值和极小值即可;
(3)求出函数f(x)在[-2,4]的最大值,得到关于c的不等式,解出即可.
解答 解:(1)f′(x)=3x2-6x-9=3(x-3)(x+1),
令f′(x)<0,解得:-1<x<3,
故f(x)在(-1,3)递减;
(2)由(1)f(x)在(-∞,-1)递增,在(-1,3)递减,在(3,+∞)递增,
故f(x)极大值=f(-1)=16,f(x)极小值=f(3)=-16;
(3)由(2)f(x)在[-2,-1)递增,在(-1,3)递减,在(3,4]递增,
而f(4)=-9,
故f(x)在[-2,4]的最大值是16,
故c2>16,解得:c>4或c<-4.
点评 本题考查了函数的单调性、最值、极值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{5}{2}$ | C. | $4+2\sqrt{3}$ | D. | $\frac{1}{2}+\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{x={t}^{2}}\\{y={t}^{4}}\end{array}\right.$(t为参数) | B. | $\left\{\begin{array}{l}{x=sint}\\{y=si{n}^{2}t}\end{array}\right.$(t为参数) | ||
| C. | $\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$(t为参数) | D. | $\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=t}\end{array}\right.$(t为参数) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16C${\;}_{10}^{4}$ | B. | 32C${\;}_{10}^{4}$ | C. | -8C${\;}_{10}^{6}$ | D. | -16C${\;}_{10}^{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com