分析 令$\overrightarrow{AM}=x\overrightarrow{AB}+y\overrightarrow{AC}$,由M是△ABC的边BC上任意一点,x+y=1.由$\overrightarrow{NM}=4\overrightarrow{AN}$,得$\overrightarrow{AN}=\frac{1}{5}\overrightarrow{AM}$,即λ+μ=$\frac{1}{5}(x+y)=\frac{1}{5}$.
解答 解:∵且$\overrightarrow{NM}=4\overrightarrow{AN}$,∴$\overrightarrow{AN}=\frac{1}{5}\overrightarrow{AM}$
令$\overrightarrow{AM}=x\overrightarrow{AB}+y\overrightarrow{AC}$,
∵M是△ABC的边BC上任意一点,∴x+y=1.
∴$\overrightarrow{AN}=\frac{1}{5}\overrightarrow{AM}=\frac{1}{5}x\overrightarrow{AB}+\frac{1}{5}y\overrightarrow{AC}$,
∴λ+μ=$\frac{1}{5}(x+y)=\frac{1}{5}$,
故答案为:$\frac{1}{5}$.
点评 本题考查了平面向量的基本定理及意义,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | i<7 | B. | i<8 | C. | i<9 | D. | i<10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m∥n,n?α,则m∥α | B. | m∥α,n?a,则m∥n | ||
| C. | 若m∥β,n∥β,m?α,n?α,则α∥β | D. | α∥β,n?α,则n∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3200 | B. | 2700 | C. | 1350 | D. | 1200 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com