精英家教网 > 高中数学 > 题目详情
11.[选做二]曲线y=x2的参数方程是(  )
A.$\left\{\begin{array}{l}{x={t}^{2}}\\{y={t}^{4}}\end{array}\right.$(t为参数)B.$\left\{\begin{array}{l}{x=sint}\\{y=si{n}^{2}t}\end{array}\right.$(t为参数)
C.$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$(t为参数)D.$\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=t}\end{array}\right.$(t为参数)

分析 根据题意,分析可得曲线y=x2中,x的取值范围为R,y的取值范围[0,+∞),据此依次分析选项中参数方程x、y的取值范围,即可得答案.

解答 解:根据题意,曲线y=x2中,x的取值范围为R,y的取值范围[0,+∞),
依次分析选项:A中,x的取值范围为[0,+∞),不合题意,
B中,x的取值范围为[-1,1],不合题意,
C中,x的取值范围为R,y的取值范围[0,+∞),符合题意,
D中,x的取值范围为[0,+∞),不合题意,
故选:C.

点评 本题考查参数方程与普通方程的转化,注意变量x的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.“a>b>0”是“a+a2>b+b2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在平面直角坐标系xOy中,已知点F(-1,1)及直线l:x-y+1=0,动点P(x,y)满足下列两个条件:①$|{PF}|=\sqrt{2}d$,其中d是P到l的距离;②$\left\{\begin{array}{l}x<0\\ y>0\\ x-y>-\frac{33}{8}\end{array}\right.$,则动点P(x,y)的轨迹方程为xy=-$\frac{1}{2}$,(-4$<x<-\frac{1}{8}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合M={x∈R,|px2-2x+3=0,x∈R}.
(1)若M中只有一个元素,求实数p的值,并求出相应的集合M;
(2)若M中最多有一个元素,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是(  )
A.$\frac{{4+\sqrt{3}}}{6}$B.$\frac{5}{6}$C.$\frac{{9+\sqrt{3}}}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3-3x2-9x+11
(1)写出函数f(x)的递减区间;
(2)求函数f(x)的极值;
(3)当x∈[-2,4]时,不等式f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.平行四边形ABCD的对角线交点为O,点M在线段OD上,点N在线段CD上,且满足$\overrightarrow{DM}=\frac{1}{2}\overrightarrow{DO},\overrightarrow{DN}=3\overrightarrow{NC}$,记$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b$,试用$\overrightarrow a,\overrightarrow b$表
示$\overrightarrow{AM},\overrightarrow{AN},\overrightarrow{MN}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知全集U=R,集合P={x|x2≤1},则∁UP=(  )
A.(1,+∞)B.(-1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.作出函数f(x)=$\left\{\begin{array}{l}{2-x,x<1}\\{2{x}^{2},x≥1}\end{array}\right.$ 的图形,并讨论它在x=1处极限是否存在.

查看答案和解析>>

同步练习册答案